🤖 Self-hosted, community-driven, local OpenAI-compatible API with Keycloak Auth Flak app as frontend. 🏠
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
FlaskAI/api/prediction.go

344 lines
8.2 KiB

package api
import (
"fmt"
"regexp"
"strings"
"sync"
"github.com/donomii/go-rwkv.cpp"
model "github.com/go-skynet/LocalAI/pkg/model"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/hashicorp/go-multierror"
)
const tokenizerSuffix = ".tokenizer.json"
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
var mutexMap sync.Mutex
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
var loadedModels map[string]interface{} = map[string]interface{}{}
var muModels sync.Mutex
func backendLoader(backendString string, loader *model.ModelLoader, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
switch strings.ToLower(backendString) {
case "llama":
return loader.LoadLLaMAModel(modelFile, llamaOpts...)
case "stablelm":
return loader.LoadStableLMModel(modelFile)
case "gpt2":
return loader.LoadGPT2Model(modelFile)
case "gptj":
return loader.LoadGPTJModel(modelFile)
case "rwkv":
return loader.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
default:
return nil, fmt.Errorf("backend unsupported: %s", backendString)
}
}
func greedyLoader(loader *model.ModelLoader, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
updateModels := func(model interface{}) {
muModels.Lock()
defer muModels.Unlock()
loadedModels[modelFile] = model
}
muModels.Lock()
m, exists := loadedModels[modelFile]
if exists {
muModels.Unlock()
return m, nil
}
muModels.Unlock()
model, modelerr := loader.LoadLLaMAModel(modelFile, llamaOpts...)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = loader.LoadGPTJModel(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = loader.LoadGPT2Model(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = loader.LoadStableLMModel(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = loader.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
return nil, fmt.Errorf("could not load model - all backends returned error: %s", err.Error())
}
func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback func(string) bool) (func() (string, error), error) {
supportStreams := false
modelFile := c.Model
// Try to load the model
llamaOpts := []llama.ModelOption{}
if c.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(c.ContextSize))
}
if c.F16 {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = greedyLoader(loader, modelFile, llamaOpts, uint32(c.Threads))
} else {
inferenceModel, err = backendLoader(c.Backend, loader, modelFile, llamaOpts, uint32(c.Threads))
}
if err != nil {
return nil, err
}
var fn func() (string, error)
switch model := inferenceModel.(type) {
case *rwkv.RwkvState:
supportStreams = true
fn = func() (string, error) {
//model.ProcessInput("You are a chatbot that is very good at chatting. blah blah blah")
stopWord := "\n"
if len(c.StopWords) > 0 {
stopWord = c.StopWords[0]
}
response := model.GenerateResponse(c.Maxtokens, stopWord, float32(c.Temperature), float32(c.TopP), tokenCallback)
return response, nil
}
case *gpt2.StableLM:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt2.GPT2:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gpt2.PredictOption{
gpt2.SetTemperature(c.Temperature),
gpt2.SetTopP(c.TopP),
gpt2.SetTopK(c.TopK),
gpt2.SetTokens(c.Maxtokens),
gpt2.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt2.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gpt2.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gptj.GPTJ:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []gptj.PredictOption{
gptj.SetTemperature(c.Temperature),
gptj.SetTopP(c.TopP),
gptj.SetTopK(c.TopK),
gptj.SetTokens(c.Maxtokens),
gptj.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gptj.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, gptj.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *llama.LLama:
supportStreams = true
fn = func() (string, error) {
if tokenCallback != nil {
model.SetTokenCallback(tokenCallback)
}
// Generate the prediction using the language model
predictOptions := []llama.PredictOption{
llama.SetTemperature(c.Temperature),
llama.SetTopP(c.TopP),
llama.SetTopK(c.TopK),
llama.SetTokens(c.Maxtokens),
llama.SetThreads(c.Threads),
}
if c.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
if c.RepeatPenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
}
if c.Keep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
}
if c.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
}
if c.F16 {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if c.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if c.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
}
return func() (string, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
res, err := fn()
if tokenCallback != nil && !supportStreams {
tokenCallback(res)
}
return res, err
}, nil
}
func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
result := []Choice{}
n := input.N
if input.N == 0 {
n = 1
}
// get the model function to call for the result
predFunc, err := ModelInference(predInput, loader, *config, tokenCallback)
if err != nil {
return result, err
}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return result, err
}
prediction = Finetune(*config, predInput, prediction)
cb(prediction, &result)
//result = append(result, Choice{Text: prediction})
}
return result, err
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
func Finetune(config Config, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
return prediction
}