diff --git a/examples/query_data/README.md b/examples/query_data/README.md index fb32442..9185709 100644 --- a/examples/query_data/README.md +++ b/examples/query_data/README.md @@ -4,11 +4,17 @@ This example makes use of [Llama-Index](https://gpt-index.readthedocs.io/en/stab It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html). +Summary of the steps: + +- prepare the dataset (and store it into `data`) +- prepare a vector index database to run queries on +- run queries + ## Requirements -For this in order to work, you will need a model compatible with the `llama.cpp` backend. This is will not work with gpt4all. +For this in order to work, you will need LocalAI and a model compatible with the `llama.cpp` backend. This is will not work with gpt4all, however you can mix models (use a llama.cpp one to build the index database, and gpt4all to query it). -The example uses `WizardLM`. Edit the config files in `models/` accordingly to specify the model you use (change `HERE`). +The example uses `WizardLM` for both embeddings and Q&A. Edit the config files in `models/` accordingly to specify the model you use (change `HERE` in the configuration files). You will also need a training data set. Copy that over `data`. @@ -28,7 +34,9 @@ cd LocalAI/examples/query_data docker-compose up -d --build ``` -### Create a storage: +### Create a storage + +In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM. ```bash export OPENAI_API_BASE=http://localhost:8080/v1 @@ -41,9 +49,22 @@ After it finishes, a directory "storage" will be created with the vector index d ## Query +We can now query the dataset. + ```bash export OPENAI_API_BASE=http://localhost:8080/v1 export OPENAI_API_KEY=sk- python query.py +``` + +## Update + +To update our vector database, run `update.py` + +```bash +export OPENAI_API_BASE=http://localhost:8080/v1 +export OPENAI_API_KEY=sk- + +python update.py ``` \ No newline at end of file diff --git a/examples/query_data/query.py b/examples/query_data/query.py index bf268c5..0f1408e 100644 --- a/examples/query_data/query.py +++ b/examples/query_data/query.py @@ -29,5 +29,7 @@ storage_context = StorageContext.from_defaults(persist_dir='./storage') index = load_index_from_storage(storage_context, service_context=service_context, ) query_engine = index.as_query_engine() -response = query_engine.query("XXXXXX your question here XXXXX") -print(response) \ No newline at end of file + +data = input("Question: ") +response = query_engine.query(data) +print(response) diff --git a/examples/query_data/update.py b/examples/query_data/update.py new file mode 100644 index 0000000..9ad283c --- /dev/null +++ b/examples/query_data/update.py @@ -0,0 +1,32 @@ +import os + +# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended) +# os.environ['OPENAI_API_KEY']= "" + +from llama_index import LLMPredictor, PromptHelper, SimpleDirectoryReader, ServiceContext +from langchain.llms.openai import OpenAI +from llama_index import StorageContext, load_index_from_storage + +base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1') + +# This example uses text-davinci-003 by default; feel free to change if desired +llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)) + +# Configure prompt parameters and initialise helper +max_input_size = 1024 +num_output = 256 +max_chunk_overlap = 20 + +prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) + +# Load documents from the 'data' directory +service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) + +# rebuild storage context +storage_context = StorageContext.from_defaults(persist_dir='./storage') + +# load index +index = load_index_from_storage(storage_context, service_context=service_context, ) +documents = SimpleDirectoryReader('data').load_data() +index.refresh(documents) +index.storage_context.persist(persist_dir="./storage") \ No newline at end of file