parent
eb4257f946
commit
5556aa46dd
@ -1,347 +0,0 @@ |
||||
package main |
||||
|
||||
import ( |
||||
"embed" |
||||
"fmt" |
||||
"net/http" |
||||
"strconv" |
||||
"strings" |
||||
"sync" |
||||
|
||||
llama "github.com/go-skynet/go-llama.cpp" |
||||
"github.com/gofiber/fiber/v2" |
||||
"github.com/gofiber/fiber/v2/middleware/cors" |
||||
"github.com/gofiber/fiber/v2/middleware/filesystem" |
||||
"github.com/gofiber/fiber/v2/middleware/recover" |
||||
) |
||||
|
||||
type OpenAIResponse struct { |
||||
Created int `json:"created,omitempty"` |
||||
Object string `json:"chat.completion,omitempty"` |
||||
ID string `json:"id,omitempty"` |
||||
Model string `json:"model,omitempty"` |
||||
Choices []Choice `json:"choices,omitempty"` |
||||
} |
||||
|
||||
type Choice struct { |
||||
Index int `json:"index,omitempty"` |
||||
FinishReason string `json:"finish_reason,omitempty"` |
||||
Message Message `json:"message,omitempty"` |
||||
Text string `json:"text,omitempty"` |
||||
} |
||||
|
||||
type Message struct { |
||||
Role string `json:"role,omitempty"` |
||||
Content string `json:"content,omitempty"` |
||||
} |
||||
|
||||
type OpenAIModel struct { |
||||
ID string `json:"id"` |
||||
Object string `json:"object"` |
||||
} |
||||
|
||||
//go:embed index.html
|
||||
var indexHTML embed.FS |
||||
|
||||
func completionEndpoint(defaultModel *llama.LLama, loader *ModelLoader, threads int, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error { |
||||
return func(c *fiber.Ctx) error { |
||||
|
||||
var err error |
||||
var model *llama.LLama |
||||
|
||||
// Get input data from the request body
|
||||
input := new(struct { |
||||
Model string `json:"model"` |
||||
Prompt string `json:"prompt"` |
||||
}) |
||||
if err := c.BodyParser(input); err != nil { |
||||
return err |
||||
} |
||||
|
||||
if input.Model == "" { |
||||
if defaultModel == nil { |
||||
return fmt.Errorf("no default model loaded, and no model specified") |
||||
} |
||||
model = defaultModel |
||||
} else { |
||||
model, err = loader.LoadModel(input.Model) |
||||
if err != nil { |
||||
return err |
||||
} |
||||
} |
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
if input.Model != "" { |
||||
mutexMap.Lock() |
||||
l, ok := mutexes[input.Model] |
||||
if !ok { |
||||
m := &sync.Mutex{} |
||||
mutexes[input.Model] = m |
||||
l = m |
||||
} |
||||
mutexMap.Unlock() |
||||
l.Lock() |
||||
defer l.Unlock() |
||||
} else { |
||||
defaultMutex.Lock() |
||||
defer defaultMutex.Unlock() |
||||
} |
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
predInput := input.Prompt |
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := loader.TemplatePrefix(input.Model, struct { |
||||
Input string |
||||
}{Input: input.Prompt}) |
||||
if err == nil { |
||||
predInput = templatedInput |
||||
} |
||||
|
||||
// Generate the prediction using the language model
|
||||
prediction, err := model.Predict( |
||||
predInput, |
||||
llama.SetTemperature(temperature), |
||||
llama.SetTopP(topP), |
||||
llama.SetTopK(topK), |
||||
llama.SetTokens(tokens), |
||||
llama.SetThreads(threads), |
||||
) |
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(OpenAIResponse{ |
||||
Model: input.Model, |
||||
Choices: []Choice{{Text: prediction}}, |
||||
}) |
||||
} |
||||
} |
||||
|
||||
func chatEndpoint(defaultModel *llama.LLama, loader *ModelLoader, threads int, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error { |
||||
return func(c *fiber.Ctx) error { |
||||
|
||||
var err error |
||||
var model *llama.LLama |
||||
|
||||
// Get input data from the request body
|
||||
input := new(struct { |
||||
Messages []Message `json:"messages"` |
||||
Model string `json:"model"` |
||||
}) |
||||
if err := c.BodyParser(input); err != nil { |
||||
return err |
||||
} |
||||
|
||||
if input.Model == "" { |
||||
if defaultModel == nil { |
||||
return fmt.Errorf("no default model loaded, and no model specified") |
||||
} |
||||
model = defaultModel |
||||
} else { |
||||
model, err = loader.LoadModel(input.Model) |
||||
if err != nil { |
||||
return err |
||||
} |
||||
} |
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
if input.Model != "" { |
||||
mutexMap.Lock() |
||||
l, ok := mutexes[input.Model] |
||||
if !ok { |
||||
m := &sync.Mutex{} |
||||
mutexes[input.Model] = m |
||||
l = m |
||||
} |
||||
mutexMap.Unlock() |
||||
l.Lock() |
||||
defer l.Unlock() |
||||
} else { |
||||
defaultMutex.Lock() |
||||
defer defaultMutex.Unlock() |
||||
} |
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
mess := []string{} |
||||
for _, i := range input.Messages { |
||||
mess = append(mess, i.Content) |
||||
} |
||||
|
||||
predInput := strings.Join(mess, "\n") |
||||
|
||||
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
||||
templatedInput, err := loader.TemplatePrefix(input.Model, struct { |
||||
Input string |
||||
}{Input: predInput}) |
||||
if err == nil { |
||||
predInput = templatedInput |
||||
} |
||||
|
||||
// Generate the prediction using the language model
|
||||
prediction, err := model.Predict( |
||||
predInput, |
||||
llama.SetTemperature(temperature), |
||||
llama.SetTopP(topP), |
||||
llama.SetTopK(topK), |
||||
llama.SetTokens(tokens), |
||||
llama.SetThreads(threads), |
||||
) |
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(OpenAIResponse{ |
||||
Model: input.Model, |
||||
Choices: []Choice{{Message: Message{Role: "assistant", Content: prediction}}}, |
||||
}) |
||||
} |
||||
} |
||||
|
||||
func api(defaultModel *llama.LLama, loader *ModelLoader, listenAddr string, threads int) error { |
||||
app := fiber.New() |
||||
|
||||
// Default middleware config
|
||||
app.Use(recover.New()) |
||||
app.Use(cors.New()) |
||||
|
||||
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
||||
var mutex = &sync.Mutex{} |
||||
mu := map[string]*sync.Mutex{} |
||||
var mumutex = &sync.Mutex{} |
||||
|
||||
// openAI compatible API endpoint
|
||||
app.Post("/v1/chat/completions", chatEndpoint(defaultModel, loader, threads, mutex, mumutex, mu)) |
||||
app.Post("/v1/completions", completionEndpoint(defaultModel, loader, threads, mutex, mumutex, mu)) |
||||
app.Get("/v1/models", func(c *fiber.Ctx) error { |
||||
models, err := loader.ListModels() |
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
dataModels := []OpenAIModel{} |
||||
for _, m := range models { |
||||
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"}) |
||||
} |
||||
return c.JSON(struct { |
||||
Object string `json:"object"` |
||||
Data []OpenAIModel `json:"data"` |
||||
}{ |
||||
Object: "list", |
||||
Data: dataModels, |
||||
}) |
||||
}) |
||||
|
||||
app.Use("/", filesystem.New(filesystem.Config{ |
||||
Root: http.FS(indexHTML), |
||||
NotFoundFile: "index.html", |
||||
})) |
||||
|
||||
/* |
||||
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
||||
"text": "What is an alpaca?", |
||||
"topP": 0.8, |
||||
"topK": 50, |
||||
"temperature": 0.7, |
||||
"tokens": 100 |
||||
}' |
||||
*/ |
||||
// Endpoint to generate the prediction
|
||||
app.Post("/predict", func(c *fiber.Ctx) error { |
||||
mutex.Lock() |
||||
defer mutex.Unlock() |
||||
// Get input data from the request body
|
||||
input := new(struct { |
||||
Text string `json:"text"` |
||||
}) |
||||
if err := c.BodyParser(input); err != nil { |
||||
return err |
||||
} |
||||
|
||||
// Set the parameters for the language model prediction
|
||||
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
|
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
// Generate the prediction using the language model
|
||||
prediction, err := defaultModel.Predict( |
||||
input.Text, |
||||
llama.SetTemperature(temperature), |
||||
llama.SetTopP(topP), |
||||
llama.SetTopK(topK), |
||||
llama.SetTokens(tokens), |
||||
llama.SetThreads(threads), |
||||
) |
||||
if err != nil { |
||||
return err |
||||
} |
||||
|
||||
// Return the prediction in the response body
|
||||
return c.JSON(struct { |
||||
Prediction string `json:"prediction"` |
||||
}{ |
||||
Prediction: prediction, |
||||
}) |
||||
}) |
||||
|
||||
// Start the server
|
||||
app.Listen(listenAddr) |
||||
return nil |
||||
} |
Loading…
Reference in new issue