deps: update gpt4all bindings, fix search path on new versions (#592)

renovate/github.com-imdario-mergo-1.x
Ettore Di Giacinto 1 year ago committed by GitHub
parent 467e88d305
commit e37361985c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 3
      Makefile
  2. 5
      api/api.go
  3. 27
      api/backend_assets.go
  4. 18
      api/openai.go
  5. 20
      api/prediction.go
  6. 4
      examples/flowise/README.md
  7. 8
      pkg/model/initializers.go

@ -5,7 +5,7 @@ BINARY_NAME=local-ai
GOLLAMA_VERSION?=5f1620443a59c5531b5a15a16cd68f600a8437e9
GPT4ALL_REPO?=https://github.com/go-skynet/gpt4all
GPT4ALL_VERSION?=f7498c9
GPT4ALL_VERSION?=d34c513e01174fe83c6042403a0d183e56478d56
GOGGMLTRANSFORMERS_VERSION?=01b8436f44294d0e1267430f9eda4460458cec54
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=930a774fa0152426ed2279cb1005b3490bb0eba6
@ -70,6 +70,7 @@ gpt4all:
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./gpt4all -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
@find ./gpt4all -type f -name "*.m" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gpt4all_/g' {} +
@find ./gpt4all -type f -name "*.c" -exec sed -i'' -e 's/llama_/llama_gpt4all_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/llama_/llama_gpt4all_/g' {} +

@ -3,6 +3,7 @@ package api
import (
"errors"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/logger"
@ -68,7 +69,9 @@ func App(opts ...AppOption) (*fiber.App, error) {
}
if options.assetsDestination != "" {
if err := PrepareBackendAssets(options.backendAssets, options.assetsDestination); err != nil {
// Extract files from the embedded FS
err := assets.ExtractFiles(options.backendAssets, options.assetsDestination)
if err != nil {
log.Warn().Msgf("Failed extracting backend assets files: %s (might be required for some backends to work properly, like gpt4all)", err)
}
}

@ -1,27 +0,0 @@
package api
import (
"embed"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/rs/zerolog/log"
)
func PrepareBackendAssets(backendAssets embed.FS, dst string) error {
// Extract files from the embedded FS
err := assets.ExtractFiles(backendAssets, dst)
if err != nil {
return err
}
// Set GPT4ALL libs where we extracted the files
// https://github.com/nomic-ai/gpt4all/commit/27e80e1d10985490c9fd4214e4bf458cfcf70896
gpt4alldir := filepath.Join(dst, "backend-assets", "gpt4all")
os.Setenv("GPT4ALL_IMPLEMENTATIONS_PATH", gpt4alldir)
log.Debug().Msgf("GPT4ALL_IMPLEMENTATIONS_PATH: %s", gpt4alldir)
return nil
}

@ -148,7 +148,7 @@ func defaultRequest(modelFile string) OpenAIRequest {
// https://platform.openai.com/docs/api-reference/completions
func completionEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
process := func(s string, req *OpenAIRequest, config *Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
ComputeChoices(s, req, config, loader, func(s string, c *[]Choice) {}, func(s string) bool {
ComputeChoices(s, req, config, o, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Text: s}},
@ -249,7 +249,7 @@ func completionEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input, config, o.loader, func(s string, c *[]Choice) {
r, err := ComputeChoices(i, input, config, o, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
@ -291,7 +291,7 @@ func embeddingsEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := ModelEmbedding("", s, o.loader, *config)
embedFn, err := ModelEmbedding("", s, o.loader, *config, o)
if err != nil {
return err
}
@ -305,7 +305,7 @@ func embeddingsEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := ModelEmbedding(s, []int{}, o.loader, *config)
embedFn, err := ModelEmbedding(s, []int{}, o.loader, *config, o)
if err != nil {
return err
}
@ -341,7 +341,7 @@ func chatEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
}
responses <- initialMessage
ComputeChoices(s, req, config, loader, func(s string, c *[]Choice) {}, func(s string) bool {
ComputeChoices(s, req, config, o, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Content: s}}},
@ -439,7 +439,7 @@ func chatEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return nil
}
result, err := ComputeChoices(predInput, input, config, o.loader, func(s string, c *[]Choice) {
result, err := ComputeChoices(predInput, input, config, o, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Message: &Message{Role: "assistant", Content: s}})
}, nil)
if err != nil {
@ -491,7 +491,7 @@ func editEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input, config, o.loader, func(s string, c *[]Choice) {
r, err := ComputeChoices(i, input, config, o, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
@ -616,7 +616,7 @@ func imageEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
baseURL := c.BaseURL()
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, o.loader, *config)
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, o.loader, *config, o)
if err != nil {
return err
}
@ -697,7 +697,7 @@ func transcriptEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
log.Debug().Msgf("Audio file copied to: %+v", dst)
whisperModel, err := o.loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads))
whisperModel, err := o.loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads), o.assetsDestination)
if err != nil {
return err
}

@ -49,11 +49,11 @@ func defaultLLamaOpts(c Config) []llama.ModelOption {
return llamaOpts
}
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c Config) (func() error, error) {
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c Config, o *Option) (func() error, error) {
if c.Backend != model.StableDiffusionBackend {
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
}
inferenceModel, err := loader.BackendLoader(c.Backend, c.ImageGenerationAssets, []llama.ModelOption{}, uint32(c.Threads))
inferenceModel, err := loader.BackendLoader(c.Backend, c.ImageGenerationAssets, []llama.ModelOption{}, uint32(c.Threads), o.assetsDestination)
if err != nil {
return nil, err
}
@ -88,7 +88,7 @@ func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negat
}, nil
}
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config) (func() ([]float32, error), error) {
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config, o *Option) (func() ([]float32, error), error) {
if !c.Embeddings {
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
}
@ -100,9 +100,9 @@ func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config)
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads))
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads))
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
}
if err != nil {
return nil, err
@ -240,7 +240,7 @@ func buildLLamaPredictOptions(c Config, modelPath string) []llama.PredictOption
return predictOptions
}
func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback func(string) bool) (func() (string, error), error) {
func ModelInference(s string, loader *model.ModelLoader, c Config, o *Option, tokenCallback func(string) bool) (func() (string, error), error) {
supportStreams := false
modelFile := c.Model
@ -249,9 +249,9 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads))
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads))
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads), o.assetsDestination)
}
if err != nil {
return nil, err
@ -579,7 +579,7 @@ func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback
}, nil
}
func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, o *Option, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
result := []Choice{}
n := input.N
@ -589,7 +589,7 @@ func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, load
}
// get the model function to call for the result
predFunc, err := ModelInference(predInput, loader, *config, tokenCallback)
predFunc, err := ModelInference(predInput, loader, *config, o, tokenCallback)
if err != nil {
return result, err
}

@ -24,3 +24,7 @@ docker-compose up --pull always
Open http://localhost:3000.
## Using LocalAI
Search for LocalAI in the integration, and use the `http://api:8080/` as URL.

@ -135,7 +135,7 @@ func rwkvLM(tokenFile string, threads uint32) func(string) (interface{}, error)
}
}
func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, llamaOpts []llama.ModelOption, threads uint32, assetDir string) (model interface{}, err error) {
log.Debug().Msgf("Loading model %s from %s", backendString, modelFile)
switch strings.ToLower(backendString) {
case LlamaBackend:
@ -161,7 +161,7 @@ func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, lla
case StarcoderBackend:
return ml.LoadModel(modelFile, starCoder)
case Gpt4AllLlamaBackend, Gpt4AllMptBackend, Gpt4AllJBackend, Gpt4All:
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads))))
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads)), gpt4all.SetLibrarySearchPath(filepath.Join(assetDir, "backend-assets", "gpt4all"))))
case BertEmbeddingsBackend:
return ml.LoadModel(modelFile, bertEmbeddings)
case RwkvBackend:
@ -175,7 +175,7 @@ func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, lla
}
}
func (ml *ModelLoader) GreedyLoader(modelFile string, llamaOpts []llama.ModelOption, threads uint32) (interface{}, error) {
func (ml *ModelLoader) GreedyLoader(modelFile string, llamaOpts []llama.ModelOption, threads uint32, assetDir string) (interface{}, error) {
log.Debug().Msgf("Loading model '%s' greedly", modelFile)
ml.mu.Lock()
@ -193,7 +193,7 @@ func (ml *ModelLoader) GreedyLoader(modelFile string, llamaOpts []llama.ModelOpt
continue
}
log.Debug().Msgf("[%s] Attempting to load", b)
model, modelerr := ml.BackendLoader(b, modelFile, llamaOpts, threads)
model, modelerr := ml.BackendLoader(b, modelFile, llamaOpts, threads, assetDir)
if modelerr == nil && model != nil {
log.Debug().Msgf("[%s] Loads OK", b)
return model, nil

Loading…
Cancel
Save