Compare commits

...

3 Commits

Author SHA1 Message Date
mudler 4c3c6fcaf7 examples(telegram): add 2 years ago
mudler 6a13cf957c examples(flowise): add 2 years ago
mudler 3e0b75b5e2 examples: use gallery in chatbot-ui, add flowise 2 years ago
  1. 1
      README.md
  2. 8
      examples/README.md
  3. 12
      examples/chatbot-ui/README.md
  4. 15
      examples/chatbot-ui/docker-compose.yaml
  5. 1
      examples/chatbot-ui/models/completion.tmpl
  6. 16
      examples/chatbot-ui/models/gpt-3.5-turbo.yaml
  7. 4
      examples/chatbot-ui/models/gpt4all.tmpl
  8. 26
      examples/flowise/README.md
  9. 37
      examples/flowise/docker-compose.yaml
  10. 28
      examples/telegram-bot/README.md
  11. 66
      examples/telegram-bot/docker-compose.yml

@ -169,6 +169,7 @@ Feel free to open up a PR to get your project listed!
- [Spark](https://github.com/cedriking/spark)
- [autogpt4all](https://github.com/aorumbayev/autogpt4all)
- [Mods](https://github.com/charmbracelet/mods)
- [Flowise](https://github.com/FlowiseAI/Flowise)
## Short-term roadmap

@ -22,6 +22,14 @@ This integration shows how to use LocalAI with [mckaywrigley/chatbot-ui](https:/
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui/)
### Flowise
_by [@mudler](https://github.com/mudler)_
This example shows how to use [FlowiseAI/Flowise](https://github.com/FlowiseAI/Flowise) with LocalAI.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/flowise/)
### Discord bot
_by [@mudler](https://github.com/mudler)_

@ -4,22 +4,18 @@ Example of integration with [mckaywrigley/chatbot-ui](https://github.com/mckaywr
![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)
## Setup
## Run
In this example LocalAI will download the gpt4all model and set it up as "gpt-3.5-turbo". See the `docker-compose.yaml`
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/chatbot-ui
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --pull always
docker-compose up --pull always
# or you can build the images with:
# docker-compose up -d --build
```

@ -3,6 +3,14 @@ version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
# As initially LocalAI will download the models defined in PRELOAD_MODELS
# you might need to tweak the healthcheck values here according to your network connection.
# Here we give a timespan of 20m to download all the required files.
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
interval: 1m
timeout: 20m
retries: 20
build:
context: ../../
dockerfile: Dockerfile
@ -11,11 +19,16 @@ services:
environment:
- DEBUG=true
- MODELS_PATH=/models
# You can preload different models here as well.
# See: https://github.com/go-skynet/model-gallery
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
chatgpt:
depends_on:
api:
condition: service_healthy
image: ghcr.io/mckaywrigley/chatbot-ui:main
ports:
- 3000:3000

@ -1,16 +0,0 @@
name: gpt-3.5-turbo
parameters:
model: ggml-gpt4all-j
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all

@ -1,4 +0,0 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

@ -0,0 +1,26 @@
# flowise
Example of integration with [FlowiseAI/Flowise](https://github.com/FlowiseAI/Flowise).
![Screenshot from 2023-05-30 18-01-03](https://github.com/go-skynet/LocalAI/assets/2420543/02458782-0549-4131-971c-95ee56ec1af8)
You can check a demo video in the Flowise PR: https://github.com/FlowiseAI/Flowise/pull/123
## Run
In this example LocalAI will download the gpt4all model and set it up as "gpt-3.5-turbo". See the `docker-compose.yaml`
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/flowise
# start with docker-compose
docker-compose up --pull always
```
## Accessing flowise
Open http://localhost:3000.

@ -0,0 +1,37 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
# As initially LocalAI will download the models defined in PRELOAD_MODELS
# you might need to tweak the healthcheck values here according to your network connection.
# Here we give a timespan of 20m to download all the required files.
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
interval: 1m
timeout: 20m
retries: 20
build:
context: ../../
dockerfile: Dockerfile
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
# You can preload different models here as well.
# See: https://github.com/go-skynet/model-gallery
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
flowise:
depends_on:
api:
condition: service_healthy
image: flowiseai/flowise
ports:
- 3000:3000
volumes:
- ~/.flowise:/root/.flowise
command: /bin/sh -c "sleep 3; flowise start"

@ -0,0 +1,28 @@
## Telegram bot
This example uses [chatgpt-telegram-bot](https://github.com/karfly/chatgpt_telegram_bot) to deploy a telegram bot with LocalAI instead of OpenAI.
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/telegram-bot
git clone https://github.com/karfly/chatgpt_telegram_bot
cp -rf docker-compose.yml chatgpt_telegram_bot
cd chatgpt_telegram_bot
mv config/config.example.yml config/config.yml
mv config/config.example.env config/config.env
# Edit config/config.yml to set the telegram bot token
vim config/config.yml
# run the bot
docker-compose --env-file config/config.env up --build
```
Note: LocalAI is configured to download `gpt4all-j` in place of `gpt-3.5-turbo` and `stablediffusion` for image generation at the first start. Download size is >6GB, if your network connection is slow, adapt the `docker-compose.yml` file healthcheck section accordingly (replace `20m`, for instance with `1h`, etc.).
To configure models manually, comment the `PRELOAD_MODELS` environment variable in the `docker-compose.yml` file and see for instance the [chatbot-ui-manual example](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui-manual) `model` directory.

@ -0,0 +1,66 @@
version: "3"
services:
api:
image: quay.io/go-skynet/local-ai:v1.18.0-ffmpeg
# As initially LocalAI will download the models defined in PRELOAD_MODELS
# you might need to tweak the healthcheck values here according to your network connection.
# Here we give a timespan of 20m to download all the required files.
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
interval: 1m
timeout: 20m
retries: 20
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
- IMAGE_PATH=/tmp
# You can preload different models here as well.
# See: https://github.com/go-skynet/model-gallery
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}, {"url": "github:go-skynet/model-gallery/stablediffusion.yaml"}, {"url": "github:go-skynet/model-gallery/whisper-base.yaml", "name": "whisper-1"}]'
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
mongo:
container_name: mongo
image: mongo:latest
restart: always
ports:
- 127.0.0.1:${MONGODB_PORT:-27017}:${MONGODB_PORT:-27017}
volumes:
- ${MONGODB_PATH:-./mongodb}:/data/db
# TODO: add auth
chatgpt_telegram_bot:
container_name: chatgpt_telegram_bot
command: python3 bot/bot.py
restart: always
environment:
- OPENAI_API_KEY=sk---anystringhere
- OPENAI_API_BASE=http://api:8080/v1
build:
context: "."
dockerfile: Dockerfile
depends_on:
api:
condition: service_healthy
mongo:
condition: service_started
mongo_express:
container_name: mongo-express
image: mongo-express:latest
restart: always
ports:
- 127.0.0.1:${MONGO_EXPRESS_PORT:-8081}:${MONGO_EXPRESS_PORT:-8081}
environment:
- ME_CONFIG_MONGODB_SERVER=mongo
- ME_CONFIG_MONGODB_PORT=${MONGODB_PORT:-27017}
- ME_CONFIG_MONGODB_ENABLE_ADMIN=false
- ME_CONFIG_MONGODB_AUTH_DATABASE=chatgpt_telegram_bot
- ME_CONFIG_BASICAUTH_USERNAME=${MONGO_EXPRESS_USERNAME:-username}
- ME_CONFIG_BASICAUTH_PASSWORD=${MONGO_EXPRESS_PASSWORD:-password}
depends_on:
- mongo
Loading…
Cancel
Save