πŸ€– Self-hosted, community-driven, local OpenAI-compatible API with Keycloak Auth Flak app as frontend. 🏠
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
mudler 650a22aef1 Add compatibility to gpt4all models 2 years ago
.github/workflows Lower conversion parallelism 2 years ago
client Add simple client 2 years ago
kubernetes Update version in kubernetes deployment 2 years ago
.goreleaser.yaml Add GitHub action workflows 2 years ago
Earthfile Add mutex, build only lite images 2 years ago
LICENSE First import 2 years ago
README.md Update README.md 2 years ago
api.go Add mutex, build only lite images 2 years ago
go.mod Add compatibility to gpt4all models 2 years ago
go.sum Add compatibility to gpt4all models 2 years ago
index.html Add a simple web-page as index of the API for helping with inference testing 2 years ago
interactive.go Add interactive.go 2 years ago
main.go Add compatibility to gpt4all models 2 years ago

README.md

🐫 llama-cli

llama-cli is a straightforward golang CLI interface for llama.cpp, providing a simple API and a command line interface that allows text generation using a GPT-based model like llama directly from the terminal.

Container images

To begin, run:

docker run -ti --rm quay.io/go-skynet/llama-cli:v0.3  --instruction "What's an alpaca?" --topk 10000

You will receive a response like the following:

An alpaca is a member of the South American Camelid family, which includes the llama, guanaco and vicuΓ±a. It is a domesticated species that originates from the Andes mountain range in South America. Alpacas are used in the textile industry for their fleece, which is much softer than wool. Alpacas are also used for meat, milk, and fiber.

Basic usage

To use llama-cli, specify a pre-trained GPT-based model, an input text, and an instruction for text generation. llama-cli takes the following arguments when running from the CLI:

llama-cli --model <model_path> --instruction <instruction> [--input <input>] [--template <template_path>] [--tokens <num_tokens>] [--threads <num_threads>] [--temperature <temperature>] [--topp <top_p>] [--topk <top_k>]
Parameter Environment Variable Default Value Description
template TEMPLATE A file containing a template for output formatting (optional).
instruction INSTRUCTION Input prompt text or instruction. "-" for STDIN.
input INPUT - Path to text or "-" for STDIN.
model MODEL_PATH The path to the pre-trained GPT-based model.
tokens TOKENS 128 The maximum number of tokens to generate.
threads THREADS NumCPU() The number of threads to use for text generation.
temperature TEMPERATURE 0.95 Sampling temperature for model output. ( values between 0.1 and 1.0 )
top_p TOP_P 0.85 The cumulative probability for top-p sampling.
top_k TOP_K 20 The number of top-k tokens to consider for text generation.
context-size CONTEXT_SIZE 512 Default token context size.
alpaca ALPACA true Set to true for alpaca models.

Here's an example of using llama-cli:

llama-cli --model ~/ggml-alpaca-7b-q4.bin --instruction "What's an alpaca?"

This will generate text based on the given model and instruction.

Advanced usage

llama-cli also provides an API for running text generation as a service. The model will be pre-loaded and kept in memory.

Example of starting the API with docker:

docker run -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.3 api --context-size 700 --threads 4

And you'll see:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” 
β”‚                   Fiber v2.42.0                   β”‚ 
β”‚               http://127.0.0.1:8080               β”‚ 
β”‚       (bound on host 0.0.0.0 and port 8080)       β”‚ 
β”‚                                                   β”‚ 
β”‚ Handlers ............. 1  Processes ........... 1 β”‚ 
β”‚ Prefork ....... Disabled  PID ................. 1 β”‚ 
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ 

You can control the API server options with command line arguments:

llama-cli api --model <model_path> [--address <address>] [--threads <num_threads>]

The API takes takes the following:

Parameter Environment Variable Default Value Description
model MODEL_PATH The path to the pre-trained GPT-based model.
threads THREADS CPU cores The number of threads to use for text generation.
address ADDRESS :8080 The address and port to listen on.
context-size CONTEXT_SIZE 512 Default token context size.
alpaca ALPACA true Set to true for alpaca models.

Once the server is running, you can make requests to it using HTTP. For example, to generate text based on an instruction, you can send a POST request to the /predict endpoint with the instruction as the request body:

curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
    "text": "What is an alpaca?",
    "topP": 0.8,
    "topK": 50,
    "temperature": 0.7,
    "tokens": 100
}'

Note: The API doesn't inject a template for talking to the instance, while the CLI does. You have to use a prompt similar to what's described in the standford-alpaca docs: https://github.com/tatsu-lab/stanford_alpaca#data-release, for instance:

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:

Using other models

You can use the lite images ( for example quay.io/go-skynet/llama-cli:v0.3-lite) that don't ship any model, and specify a model binary to be used for inference with --model.

13B and 30B models are known to work:

# Download the model image, extract the model
# Use the model with llama-cli
docker run -v $PWD:/models -p 8080:8080 -ti --rm quay.io/go-skynet/llama-cli:v0.3-lite api --model /models/model.bin

Golang client API

The llama-cli codebase has also a small client in go that can be used alongside with the api:

package main

import (
	"fmt"

	client "github.com/go-skynet/llama-cli/client"
)

func main() {

	cli := client.NewClient("http://ip:30007")

	out, err := cli.Predict("What's an alpaca?")
	if err != nil {
		panic(err)
	}

	fmt.Println(out)
}

Kubernetes

You can run the API directly in Kubernetes:

kubectl apply -f https://raw.githubusercontent.com/go-skynet/llama-cli/master/kubernetes/deployment.yaml

Build locally

Pre-built images might fit well for most of the modern hardware, however you can and might need to build the images manually.

In order to build the llama-cli container image locally you can use docker:

# build the image as "alpaca-image"
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +image --IMAGE=alpaca-image
# run the image
docker run alpaca-image --instruction "What's an alpaca?"

Or build the binary with:

# build the image as "alpaca-image"
docker run --privileged -v /var/run/docker.sock:/var/run/docker.sock --rm -t -v "$(pwd)":/workspace -v earthly-tmp:/tmp/earthly:rw earthly/earthly:v0.7.2 +build
# run the binary
./llama-cli --instruction "What's an alpaca?"