You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
396 lines
9.5 KiB
396 lines
9.5 KiB
package api
|
|
|
|
import (
|
|
"bufio"
|
|
"encoding/json"
|
|
"fmt"
|
|
"os"
|
|
"path/filepath"
|
|
"regexp"
|
|
"strings"
|
|
"sync"
|
|
|
|
model "github.com/go-skynet/LocalAI/pkg/model"
|
|
"github.com/gofiber/fiber/v2"
|
|
"github.com/rs/zerolog/log"
|
|
"github.com/valyala/fasthttp"
|
|
)
|
|
|
|
// APIError provides error information returned by the OpenAI API.
|
|
type APIError struct {
|
|
Code any `json:"code,omitempty"`
|
|
Message string `json:"message"`
|
|
Param *string `json:"param,omitempty"`
|
|
Type string `json:"type"`
|
|
}
|
|
|
|
type ErrorResponse struct {
|
|
Error *APIError `json:"error,omitempty"`
|
|
}
|
|
|
|
type OpenAIResponse struct {
|
|
Created int `json:"created,omitempty"`
|
|
Object string `json:"object,omitempty"`
|
|
ID string `json:"id,omitempty"`
|
|
Model string `json:"model,omitempty"`
|
|
Choices []Choice `json:"choices,omitempty"`
|
|
}
|
|
|
|
type Choice struct {
|
|
Index int `json:"index,omitempty"`
|
|
FinishReason string `json:"finish_reason,omitempty"`
|
|
Message *Message `json:"message,omitempty"`
|
|
Delta *Message `json:"delta,omitempty"`
|
|
Text string `json:"text,omitempty"`
|
|
}
|
|
|
|
type Message struct {
|
|
Role string `json:"role,omitempty" yaml:"role"`
|
|
Content string `json:"content,omitempty" yaml:"content"`
|
|
}
|
|
|
|
type OpenAIModel struct {
|
|
ID string `json:"id"`
|
|
Object string `json:"object"`
|
|
}
|
|
|
|
type OpenAIRequest struct {
|
|
Model string `json:"model" yaml:"model"`
|
|
|
|
// Prompt is read only by completion API calls
|
|
Prompt string `json:"prompt" yaml:"prompt"`
|
|
|
|
Stop string `json:"stop" yaml:"stop"`
|
|
|
|
// Messages is read only by chat/completion API calls
|
|
Messages []Message `json:"messages" yaml:"messages"`
|
|
|
|
Stream bool `json:"stream"`
|
|
Echo bool `json:"echo"`
|
|
// Common options between all the API calls
|
|
TopP float64 `json:"top_p" yaml:"top_p"`
|
|
TopK int `json:"top_k" yaml:"top_k"`
|
|
Temperature float64 `json:"temperature" yaml:"temperature"`
|
|
Maxtokens int `json:"max_tokens" yaml:"max_tokens"`
|
|
|
|
N int `json:"n"`
|
|
|
|
// Custom parameters - not present in the OpenAI API
|
|
Batch int `json:"batch" yaml:"batch"`
|
|
F16 bool `json:"f16" yaml:"f16"`
|
|
IgnoreEOS bool `json:"ignore_eos" yaml:"ignore_eos"`
|
|
RepeatPenalty float64 `json:"repeat_penalty" yaml:"repeat_penalty"`
|
|
Keep int `json:"n_keep" yaml:"n_keep"`
|
|
|
|
Seed int `json:"seed" yaml:"seed"`
|
|
}
|
|
|
|
func defaultRequest(modelFile string) OpenAIRequest {
|
|
return OpenAIRequest{
|
|
TopP: 0.7,
|
|
TopK: 80,
|
|
Maxtokens: 512,
|
|
Temperature: 0.9,
|
|
Model: modelFile,
|
|
}
|
|
}
|
|
|
|
func updateConfig(config *Config, input *OpenAIRequest) {
|
|
if input.Echo {
|
|
config.Echo = input.Echo
|
|
}
|
|
if input.TopK != 0 {
|
|
config.TopK = input.TopK
|
|
}
|
|
if input.TopP != 0 {
|
|
config.TopP = input.TopP
|
|
}
|
|
|
|
if input.Temperature != 0 {
|
|
config.Temperature = input.Temperature
|
|
}
|
|
|
|
if input.Maxtokens != 0 {
|
|
config.Maxtokens = input.Maxtokens
|
|
}
|
|
|
|
if input.Stop != "" {
|
|
config.StopWords = append(config.StopWords, input.Stop)
|
|
}
|
|
|
|
if input.RepeatPenalty != 0 {
|
|
config.RepeatPenalty = input.RepeatPenalty
|
|
}
|
|
|
|
if input.Keep != 0 {
|
|
config.Keep = input.Keep
|
|
}
|
|
|
|
if input.Batch != 0 {
|
|
config.Batch = input.Batch
|
|
}
|
|
|
|
if input.F16 {
|
|
config.F16 = input.F16
|
|
}
|
|
|
|
if input.IgnoreEOS {
|
|
config.IgnoreEOS = input.IgnoreEOS
|
|
}
|
|
|
|
if input.Seed != 0 {
|
|
config.Seed = input.Seed
|
|
}
|
|
}
|
|
|
|
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
|
var mu sync.Mutex = sync.Mutex{}
|
|
|
|
// https://platform.openai.com/docs/api-reference/completions
|
|
func openAIEndpoint(cm ConfigMerger, chat, debug bool, loader *model.ModelLoader, threads, ctx int, f16 bool) func(c *fiber.Ctx) error {
|
|
return func(c *fiber.Ctx) error {
|
|
|
|
input := new(OpenAIRequest)
|
|
// Get input data from the request body
|
|
if err := c.BodyParser(input); err != nil {
|
|
return err
|
|
}
|
|
|
|
if input.Stream {
|
|
log.Debug().Msgf("Stream request received")
|
|
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
|
|
c.Set("Content-Type", "text/event-stream; charset=utf-8")
|
|
c.Set("Cache-Control", "no-cache")
|
|
c.Set("Connection", "keep-alive")
|
|
c.Set("Transfer-Encoding", "chunked")
|
|
}
|
|
|
|
modelFile := input.Model
|
|
received, _ := json.Marshal(input)
|
|
|
|
log.Debug().Msgf("Request received: %s", string(received))
|
|
|
|
// Set model from bearer token, if available
|
|
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
|
|
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
|
|
|
|
// If no model was specified, take the first available
|
|
if modelFile == "" && !bearerExists {
|
|
models, _ := loader.ListModels()
|
|
if len(models) > 0 {
|
|
modelFile = models[0]
|
|
log.Debug().Msgf("No model specified, using: %s", modelFile)
|
|
} else {
|
|
log.Debug().Msgf("No model specified, returning error")
|
|
return fmt.Errorf("no model specified")
|
|
}
|
|
}
|
|
|
|
// If a model is found in bearer token takes precedence
|
|
if bearerExists {
|
|
log.Debug().Msgf("Using model from bearer token: %s", bearer)
|
|
modelFile = bearer
|
|
}
|
|
|
|
// Load a config file if present after the model name
|
|
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
|
|
if _, err := os.Stat(modelConfig); err == nil {
|
|
if err := cm.LoadConfig(modelConfig); err != nil {
|
|
return fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
|
|
}
|
|
}
|
|
|
|
var config *Config
|
|
cfg, exists := cm[modelFile]
|
|
if !exists {
|
|
config = &Config{
|
|
OpenAIRequest: defaultRequest(modelFile),
|
|
}
|
|
} else {
|
|
config = &cfg
|
|
}
|
|
|
|
// Set the parameters for the language model prediction
|
|
updateConfig(config, input)
|
|
|
|
if threads != 0 {
|
|
config.Threads = threads
|
|
}
|
|
if ctx != 0 {
|
|
config.ContextSize = ctx
|
|
}
|
|
if f16 {
|
|
config.F16 = true
|
|
}
|
|
|
|
if debug {
|
|
config.Debug = true
|
|
}
|
|
|
|
log.Debug().Msgf("Parameter Config: %+v", config)
|
|
|
|
predInput := input.Prompt
|
|
if chat {
|
|
mess := []string{}
|
|
for _, i := range input.Messages {
|
|
r := config.Roles[i.Role]
|
|
if r == "" {
|
|
r = i.Role
|
|
}
|
|
|
|
content := fmt.Sprint(r, " ", i.Content)
|
|
mess = append(mess, content)
|
|
}
|
|
|
|
predInput = strings.Join(mess, "\n")
|
|
}
|
|
|
|
templateFile := config.Model
|
|
if config.TemplateConfig.Chat != "" && chat {
|
|
templateFile = config.TemplateConfig.Chat
|
|
}
|
|
|
|
if config.TemplateConfig.Completion != "" && !chat {
|
|
templateFile = config.TemplateConfig.Completion
|
|
}
|
|
|
|
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
|
templatedInput, err := loader.TemplatePrefix(templateFile, struct {
|
|
Input string
|
|
}{Input: predInput})
|
|
if err == nil {
|
|
predInput = templatedInput
|
|
log.Debug().Msgf("Template found, input modified to: %s", predInput)
|
|
}
|
|
|
|
result := []Choice{}
|
|
|
|
n := input.N
|
|
|
|
if input.N == 0 {
|
|
n = 1
|
|
}
|
|
|
|
// get the model function to call for the result
|
|
predFunc, err := ModelInference(predInput, loader, *config)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
finetunePrediction := func(prediction string) string {
|
|
if config.Echo {
|
|
prediction = predInput + prediction
|
|
}
|
|
|
|
for _, c := range config.Cutstrings {
|
|
mu.Lock()
|
|
reg, ok := cutstrings[c]
|
|
if !ok {
|
|
cutstrings[c] = regexp.MustCompile(c)
|
|
reg = cutstrings[c]
|
|
}
|
|
mu.Unlock()
|
|
prediction = reg.ReplaceAllString(prediction, "")
|
|
}
|
|
|
|
for _, c := range config.TrimSpace {
|
|
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
|
}
|
|
return prediction
|
|
}
|
|
|
|
for i := 0; i < n; i++ {
|
|
prediction, err := predFunc()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
prediction = finetunePrediction(prediction)
|
|
|
|
if chat {
|
|
if input.Stream {
|
|
result = append(result, Choice{Delta: &Message{Role: "assistant", Content: prediction}})
|
|
} else {
|
|
result = append(result, Choice{Message: &Message{Role: "assistant", Content: prediction}})
|
|
}
|
|
} else {
|
|
result = append(result, Choice{Text: prediction})
|
|
}
|
|
}
|
|
|
|
resp := &OpenAIResponse{
|
|
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: result,
|
|
}
|
|
if input.Stream && chat {
|
|
resp.Object = "chat.completion.chunk"
|
|
} else if chat {
|
|
resp.Object = "chat.completion"
|
|
} else {
|
|
resp.Object = "text_completion"
|
|
}
|
|
|
|
jsonResult, _ := json.Marshal(resp)
|
|
log.Debug().Msgf("Response: %s", jsonResult)
|
|
|
|
if input.Stream {
|
|
log.Debug().Msgf("Handling stream request")
|
|
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
|
|
fmt.Fprintf(w, "event: data\n")
|
|
w.Flush()
|
|
|
|
fmt.Fprintf(w, "data: %s\n\n", jsonResult)
|
|
w.Flush()
|
|
|
|
fmt.Fprintf(w, "event: data\n")
|
|
w.Flush()
|
|
|
|
resp := &OpenAIResponse{
|
|
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
|
|
Choices: []Choice{Choice{FinishReason: "stop"}},
|
|
}
|
|
respData, _ := json.Marshal(resp)
|
|
|
|
fmt.Fprintf(w, "data: %s\n\n", respData)
|
|
w.Flush()
|
|
|
|
// fmt.Fprintf(w, "data: [DONE]\n\n")
|
|
// w.Flush()
|
|
}))
|
|
return nil
|
|
} else {
|
|
// Return the prediction in the response body
|
|
return c.JSON(resp)
|
|
}
|
|
}
|
|
}
|
|
|
|
func listModels(loader *model.ModelLoader, cm ConfigMerger) func(ctx *fiber.Ctx) error {
|
|
return func(c *fiber.Ctx) error {
|
|
models, err := loader.ListModels()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
var mm map[string]interface{} = map[string]interface{}{}
|
|
|
|
dataModels := []OpenAIModel{}
|
|
for _, m := range models {
|
|
mm[m] = nil
|
|
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
|
|
}
|
|
|
|
for k := range cm {
|
|
if _, exists := mm[k]; !exists {
|
|
dataModels = append(dataModels, OpenAIModel{ID: k, Object: "model"})
|
|
}
|
|
}
|
|
|
|
return c.JSON(struct {
|
|
Object string `json:"object"`
|
|
Data []OpenAIModel `json:"data"`
|
|
}{
|
|
Object: "list",
|
|
Data: dataModels,
|
|
})
|
|
}
|
|
}
|
|
|