Son CV dans un terminal web en Javascript!
https://terminal-cv.gregandev.fr
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
8.6 KiB
298 lines
8.6 KiB
1 year ago
|
/**
|
||
|
* Prime number generation API.
|
||
|
*
|
||
|
* @author Dave Longley
|
||
|
*
|
||
|
* Copyright (c) 2014 Digital Bazaar, Inc.
|
||
|
*/
|
||
|
var forge = require('./forge');
|
||
|
require('./util');
|
||
|
require('./jsbn');
|
||
|
require('./random');
|
||
|
|
||
|
(function() {
|
||
|
|
||
|
// forge.prime already defined
|
||
|
if(forge.prime) {
|
||
|
module.exports = forge.prime;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* PRIME API */
|
||
|
var prime = module.exports = forge.prime = forge.prime || {};
|
||
|
|
||
|
var BigInteger = forge.jsbn.BigInteger;
|
||
|
|
||
|
// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
|
||
|
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
|
||
|
var THIRTY = new BigInteger(null);
|
||
|
THIRTY.fromInt(30);
|
||
|
var op_or = function(x, y) {return x|y;};
|
||
|
|
||
|
/**
|
||
|
* Generates a random probable prime with the given number of bits.
|
||
|
*
|
||
|
* Alternative algorithms can be specified by name as a string or as an
|
||
|
* object with custom options like so:
|
||
|
*
|
||
|
* {
|
||
|
* name: 'PRIMEINC',
|
||
|
* options: {
|
||
|
* maxBlockTime: <the maximum amount of time to block the main
|
||
|
* thread before allowing I/O other JS to run>,
|
||
|
* millerRabinTests: <the number of miller-rabin tests to run>,
|
||
|
* workerScript: <the worker script URL>,
|
||
|
* workers: <the number of web workers (if supported) to use,
|
||
|
* -1 to use estimated cores minus one>.
|
||
|
* workLoad: the size of the work load, ie: number of possible prime
|
||
|
* numbers for each web worker to check per work assignment,
|
||
|
* (default: 100).
|
||
|
* }
|
||
|
* }
|
||
|
*
|
||
|
* @param bits the number of bits for the prime number.
|
||
|
* @param options the options to use.
|
||
|
* [algorithm] the algorithm to use (default: 'PRIMEINC').
|
||
|
* [prng] a custom crypto-secure pseudo-random number generator to use,
|
||
|
* that must define "getBytesSync".
|
||
|
*
|
||
|
* @return callback(err, num) called once the operation completes.
|
||
|
*/
|
||
|
prime.generateProbablePrime = function(bits, options, callback) {
|
||
|
if(typeof options === 'function') {
|
||
|
callback = options;
|
||
|
options = {};
|
||
|
}
|
||
|
options = options || {};
|
||
|
|
||
|
// default to PRIMEINC algorithm
|
||
|
var algorithm = options.algorithm || 'PRIMEINC';
|
||
|
if(typeof algorithm === 'string') {
|
||
|
algorithm = {name: algorithm};
|
||
|
}
|
||
|
algorithm.options = algorithm.options || {};
|
||
|
|
||
|
// create prng with api that matches BigInteger secure random
|
||
|
var prng = options.prng || forge.random;
|
||
|
var rng = {
|
||
|
// x is an array to fill with bytes
|
||
|
nextBytes: function(x) {
|
||
|
var b = prng.getBytesSync(x.length);
|
||
|
for(var i = 0; i < x.length; ++i) {
|
||
|
x[i] = b.charCodeAt(i);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
if(algorithm.name === 'PRIMEINC') {
|
||
|
return primeincFindPrime(bits, rng, algorithm.options, callback);
|
||
|
}
|
||
|
|
||
|
throw new Error('Invalid prime generation algorithm: ' + algorithm.name);
|
||
|
};
|
||
|
|
||
|
function primeincFindPrime(bits, rng, options, callback) {
|
||
|
if('workers' in options) {
|
||
|
return primeincFindPrimeWithWorkers(bits, rng, options, callback);
|
||
|
}
|
||
|
return primeincFindPrimeWithoutWorkers(bits, rng, options, callback);
|
||
|
}
|
||
|
|
||
|
function primeincFindPrimeWithoutWorkers(bits, rng, options, callback) {
|
||
|
// initialize random number
|
||
|
var num = generateRandom(bits, rng);
|
||
|
|
||
|
/* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
|
||
|
number we are given is always aligned at 30k + 1. Each time the number is
|
||
|
determined not to be prime we add to get to the next 'i', eg: if the number
|
||
|
was at 30k + 1 we add 6. */
|
||
|
var deltaIdx = 0;
|
||
|
|
||
|
// get required number of MR tests
|
||
|
var mrTests = getMillerRabinTests(num.bitLength());
|
||
|
if('millerRabinTests' in options) {
|
||
|
mrTests = options.millerRabinTests;
|
||
|
}
|
||
|
|
||
|
// find prime nearest to 'num' for maxBlockTime ms
|
||
|
// 10 ms gives 5ms of leeway for other calculations before dropping
|
||
|
// below 60fps (1000/60 == 16.67), but in reality, the number will
|
||
|
// likely be higher due to an 'atomic' big int modPow
|
||
|
var maxBlockTime = 10;
|
||
|
if('maxBlockTime' in options) {
|
||
|
maxBlockTime = options.maxBlockTime;
|
||
|
}
|
||
|
|
||
|
_primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback);
|
||
|
}
|
||
|
|
||
|
function _primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback) {
|
||
|
var start = +new Date();
|
||
|
do {
|
||
|
// overflow, regenerate random number
|
||
|
if(num.bitLength() > bits) {
|
||
|
num = generateRandom(bits, rng);
|
||
|
}
|
||
|
// do primality test
|
||
|
if(num.isProbablePrime(mrTests)) {
|
||
|
return callback(null, num);
|
||
|
}
|
||
|
// get next potential prime
|
||
|
num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
|
||
|
} while(maxBlockTime < 0 || (+new Date() - start < maxBlockTime));
|
||
|
|
||
|
// keep trying later
|
||
|
forge.util.setImmediate(function() {
|
||
|
_primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// NOTE: This algorithm is indeterminate in nature because workers
|
||
|
// run in parallel looking at different segments of numbers. Even if this
|
||
|
// algorithm is run twice with the same input from a predictable RNG, it
|
||
|
// may produce different outputs.
|
||
|
function primeincFindPrimeWithWorkers(bits, rng, options, callback) {
|
||
|
// web workers unavailable
|
||
|
if(typeof Worker === 'undefined') {
|
||
|
return primeincFindPrimeWithoutWorkers(bits, rng, options, callback);
|
||
|
}
|
||
|
|
||
|
// initialize random number
|
||
|
var num = generateRandom(bits, rng);
|
||
|
|
||
|
// use web workers to generate keys
|
||
|
var numWorkers = options.workers;
|
||
|
var workLoad = options.workLoad || 100;
|
||
|
var range = workLoad * 30 / 8;
|
||
|
var workerScript = options.workerScript || 'forge/prime.worker.js';
|
||
|
if(numWorkers === -1) {
|
||
|
return forge.util.estimateCores(function(err, cores) {
|
||
|
if(err) {
|
||
|
// default to 2
|
||
|
cores = 2;
|
||
|
}
|
||
|
numWorkers = cores - 1;
|
||
|
generate();
|
||
|
});
|
||
|
}
|
||
|
generate();
|
||
|
|
||
|
function generate() {
|
||
|
// require at least 1 worker
|
||
|
numWorkers = Math.max(1, numWorkers);
|
||
|
|
||
|
// TODO: consider optimizing by starting workers outside getPrime() ...
|
||
|
// note that in order to clean up they will have to be made internally
|
||
|
// asynchronous which may actually be slower
|
||
|
|
||
|
// start workers immediately
|
||
|
var workers = [];
|
||
|
for(var i = 0; i < numWorkers; ++i) {
|
||
|
// FIXME: fix path or use blob URLs
|
||
|
workers[i] = new Worker(workerScript);
|
||
|
}
|
||
|
var running = numWorkers;
|
||
|
|
||
|
// listen for requests from workers and assign ranges to find prime
|
||
|
for(var i = 0; i < numWorkers; ++i) {
|
||
|
workers[i].addEventListener('message', workerMessage);
|
||
|
}
|
||
|
|
||
|
/* Note: The distribution of random numbers is unknown. Therefore, each
|
||
|
web worker is continuously allocated a range of numbers to check for a
|
||
|
random number until one is found.
|
||
|
|
||
|
Every 30 numbers will be checked just 8 times, because prime numbers
|
||
|
have the form:
|
||
|
|
||
|
30k+i, for i < 30 and gcd(30, i)=1 (there are 8 values of i for this)
|
||
|
|
||
|
Therefore, if we want a web worker to run N checks before asking for
|
||
|
a new range of numbers, each range must contain N*30/8 numbers.
|
||
|
|
||
|
For 100 checks (workLoad), this is a range of 375. */
|
||
|
|
||
|
var found = false;
|
||
|
function workerMessage(e) {
|
||
|
// ignore message, prime already found
|
||
|
if(found) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
--running;
|
||
|
var data = e.data;
|
||
|
if(data.found) {
|
||
|
// terminate all workers
|
||
|
for(var i = 0; i < workers.length; ++i) {
|
||
|
workers[i].terminate();
|
||
|
}
|
||
|
found = true;
|
||
|
return callback(null, new BigInteger(data.prime, 16));
|
||
|
}
|
||
|
|
||
|
// overflow, regenerate random number
|
||
|
if(num.bitLength() > bits) {
|
||
|
num = generateRandom(bits, rng);
|
||
|
}
|
||
|
|
||
|
// assign new range to check
|
||
|
var hex = num.toString(16);
|
||
|
|
||
|
// start prime search
|
||
|
e.target.postMessage({
|
||
|
hex: hex,
|
||
|
workLoad: workLoad
|
||
|
});
|
||
|
|
||
|
num.dAddOffset(range, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generates a random number using the given number of bits and RNG.
|
||
|
*
|
||
|
* @param bits the number of bits for the number.
|
||
|
* @param rng the random number generator to use.
|
||
|
*
|
||
|
* @return the random number.
|
||
|
*/
|
||
|
function generateRandom(bits, rng) {
|
||
|
var num = new BigInteger(bits, rng);
|
||
|
// force MSB set
|
||
|
var bits1 = bits - 1;
|
||
|
if(!num.testBit(bits1)) {
|
||
|
num.bitwiseTo(BigInteger.ONE.shiftLeft(bits1), op_or, num);
|
||
|
}
|
||
|
// align number on 30k+1 boundary
|
||
|
num.dAddOffset(31 - num.mod(THIRTY).byteValue(), 0);
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the required number of Miller-Rabin tests to generate a
|
||
|
* prime with an error probability of (1/2)^80.
|
||
|
*
|
||
|
* See Handbook of Applied Cryptography Chapter 4, Table 4.4.
|
||
|
*
|
||
|
* @param bits the bit size.
|
||
|
*
|
||
|
* @return the required number of iterations.
|
||
|
*/
|
||
|
function getMillerRabinTests(bits) {
|
||
|
if(bits <= 100) return 27;
|
||
|
if(bits <= 150) return 18;
|
||
|
if(bits <= 200) return 15;
|
||
|
if(bits <= 250) return 12;
|
||
|
if(bits <= 300) return 9;
|
||
|
if(bits <= 350) return 8;
|
||
|
if(bits <= 400) return 7;
|
||
|
if(bits <= 500) return 6;
|
||
|
if(bits <= 600) return 5;
|
||
|
if(bits <= 800) return 4;
|
||
|
if(bits <= 1250) return 3;
|
||
|
return 2;
|
||
|
}
|
||
|
|
||
|
})();
|