Son CV dans un terminal web en Javascript!
https://terminal-cv.gregandev.fr
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
380 lines
10 KiB
380 lines
10 KiB
2 years ago
|
'use strict';
|
||
|
|
||
|
const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/;
|
||
|
const regTransformSplit =
|
||
|
/\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
|
||
|
const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
|
||
|
|
||
|
/**
|
||
|
* @typedef {{ name: string, data: Array<number> }} TransformItem
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Convert transform string to JS representation.
|
||
|
*
|
||
|
* @type {(transformString: string) => Array<TransformItem>}
|
||
|
*/
|
||
|
exports.transform2js = (transformString) => {
|
||
|
// JS representation of the transform data
|
||
|
/**
|
||
|
* @type {Array<TransformItem>}
|
||
|
*/
|
||
|
const transforms = [];
|
||
|
// current transform context
|
||
|
/**
|
||
|
* @type {null | TransformItem}
|
||
|
*/
|
||
|
let current = null;
|
||
|
// split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
|
||
|
for (const item of transformString.split(regTransformSplit)) {
|
||
|
var num;
|
||
|
if (item) {
|
||
|
// if item is a translate function
|
||
|
if (regTransformTypes.test(item)) {
|
||
|
// then collect it and change current context
|
||
|
current = { name: item, data: [] };
|
||
|
transforms.push(current);
|
||
|
// else if item is data
|
||
|
} else {
|
||
|
// then split it into [10, 50] and collect as context.data
|
||
|
// eslint-disable-next-line no-cond-assign
|
||
|
while ((num = regNumericValues.exec(item))) {
|
||
|
num = Number(num);
|
||
|
if (current != null) {
|
||
|
current.data.push(num);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// return empty array if broken transform (no data)
|
||
|
return current == null || current.data.length == 0 ? [] : transforms;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply transforms into one.
|
||
|
*
|
||
|
* @type {(transforms: Array<TransformItem>) => TransformItem}
|
||
|
*/
|
||
|
exports.transformsMultiply = (transforms) => {
|
||
|
// convert transforms objects to the matrices
|
||
|
const matrixData = transforms.map((transform) => {
|
||
|
if (transform.name === 'matrix') {
|
||
|
return transform.data;
|
||
|
}
|
||
|
return transformToMatrix(transform);
|
||
|
});
|
||
|
// multiply all matrices into one
|
||
|
const matrixTransform = {
|
||
|
name: 'matrix',
|
||
|
data:
|
||
|
matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [],
|
||
|
};
|
||
|
return matrixTransform;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* math utilities in radians.
|
||
|
*/
|
||
|
const mth = {
|
||
|
/**
|
||
|
* @type {(deg: number) => number}
|
||
|
*/
|
||
|
rad: (deg) => {
|
||
|
return (deg * Math.PI) / 180;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* @type {(rad: number) => number}
|
||
|
*/
|
||
|
deg: (rad) => {
|
||
|
return (rad * 180) / Math.PI;
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* @type {(deg: number) => number}
|
||
|
*/
|
||
|
cos: (deg) => {
|
||
|
return Math.cos(mth.rad(deg));
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* @type {(val: number, floatPrecision: number) => number}
|
||
|
*/
|
||
|
acos: (val, floatPrecision) => {
|
||
|
return Number(mth.deg(Math.acos(val)).toFixed(floatPrecision));
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* @type {(deg: number) => number}
|
||
|
*/
|
||
|
sin: (deg) => {
|
||
|
return Math.sin(mth.rad(deg));
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* @type {(val: number, floatPrecision: number) => number}
|
||
|
*/
|
||
|
asin: (val, floatPrecision) => {
|
||
|
return Number(mth.deg(Math.asin(val)).toFixed(floatPrecision));
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* @type {(deg: number) => number}
|
||
|
*/
|
||
|
tan: (deg) => {
|
||
|
return Math.tan(mth.rad(deg));
|
||
|
},
|
||
|
|
||
|
/**
|
||
|
* @type {(val: number, floatPrecision: number) => number}
|
||
|
*/
|
||
|
atan: (val, floatPrecision) => {
|
||
|
return Number(mth.deg(Math.atan(val)).toFixed(floatPrecision));
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* @typedef {{
|
||
|
* convertToShorts: boolean,
|
||
|
* floatPrecision: number,
|
||
|
* transformPrecision: number,
|
||
|
* matrixToTransform: boolean,
|
||
|
* shortTranslate: boolean,
|
||
|
* shortScale: boolean,
|
||
|
* shortRotate: boolean,
|
||
|
* removeUseless: boolean,
|
||
|
* collapseIntoOne: boolean,
|
||
|
* leadingZero: boolean,
|
||
|
* negativeExtraSpace: boolean,
|
||
|
* }} TransformParams
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* Decompose matrix into simple transforms. See
|
||
|
* https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
|
||
|
*
|
||
|
* @type {(transform: TransformItem, params: TransformParams) => Array<TransformItem>}
|
||
|
*/
|
||
|
exports.matrixToTransform = (transform, params) => {
|
||
|
let floatPrecision = params.floatPrecision;
|
||
|
let data = transform.data;
|
||
|
let transforms = [];
|
||
|
let sx = Number(
|
||
|
Math.hypot(data[0], data[1]).toFixed(params.transformPrecision)
|
||
|
);
|
||
|
let sy = Number(
|
||
|
((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(
|
||
|
params.transformPrecision
|
||
|
)
|
||
|
);
|
||
|
let colsSum = data[0] * data[2] + data[1] * data[3];
|
||
|
let rowsSum = data[0] * data[1] + data[2] * data[3];
|
||
|
let scaleBefore = rowsSum != 0 || sx == sy;
|
||
|
|
||
|
// [..., ..., ..., ..., tx, ty] → translate(tx, ty)
|
||
|
if (data[4] || data[5]) {
|
||
|
transforms.push({
|
||
|
name: 'translate',
|
||
|
data: data.slice(4, data[5] ? 6 : 5),
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
|
||
|
if (!data[1] && data[2]) {
|
||
|
transforms.push({
|
||
|
name: 'skewX',
|
||
|
data: [mth.atan(data[2] / sy, floatPrecision)],
|
||
|
});
|
||
|
|
||
|
// [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
|
||
|
} else if (data[1] && !data[2]) {
|
||
|
transforms.push({
|
||
|
name: 'skewY',
|
||
|
data: [mth.atan(data[1] / data[0], floatPrecision)],
|
||
|
});
|
||
|
sx = data[0];
|
||
|
sy = data[3];
|
||
|
|
||
|
// [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
|
||
|
// [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
|
||
|
} else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
|
||
|
if (!scaleBefore) {
|
||
|
sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);
|
||
|
sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);
|
||
|
transforms.push({ name: 'scale', data: [sx, sy] });
|
||
|
}
|
||
|
var angle = Math.min(Math.max(-1, data[0] / sx), 1),
|
||
|
rotate = [
|
||
|
mth.acos(angle, floatPrecision) *
|
||
|
((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1),
|
||
|
];
|
||
|
|
||
|
if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
|
||
|
|
||
|
if (rowsSum && colsSum)
|
||
|
transforms.push({
|
||
|
name: 'skewX',
|
||
|
data: [mth.atan(colsSum / (sx * sx), floatPrecision)],
|
||
|
});
|
||
|
|
||
|
// rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
|
||
|
if (rotate[0] && (data[4] || data[5])) {
|
||
|
transforms.shift();
|
||
|
var cos = data[0] / sx,
|
||
|
sin = data[1] / (scaleBefore ? sx : sy),
|
||
|
x = data[4] * (scaleBefore ? 1 : sy),
|
||
|
y = data[5] * (scaleBefore ? 1 : sx),
|
||
|
denom =
|
||
|
(Math.pow(1 - cos, 2) + Math.pow(sin, 2)) *
|
||
|
(scaleBefore ? 1 : sx * sy);
|
||
|
rotate.push(((1 - cos) * x - sin * y) / denom);
|
||
|
rotate.push(((1 - cos) * y + sin * x) / denom);
|
||
|
}
|
||
|
|
||
|
// Too many transformations, return original matrix if it isn't just a scale/translate
|
||
|
} else if (data[1] || data[2]) {
|
||
|
return [transform];
|
||
|
}
|
||
|
|
||
|
if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length)
|
||
|
transforms.push({
|
||
|
name: 'scale',
|
||
|
data: sx == sy ? [sx] : [sx, sy],
|
||
|
});
|
||
|
|
||
|
return transforms;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Convert transform to the matrix data.
|
||
|
*
|
||
|
* @type {(transform: TransformItem) => Array<number> }
|
||
|
*/
|
||
|
const transformToMatrix = (transform) => {
|
||
|
if (transform.name === 'matrix') {
|
||
|
return transform.data;
|
||
|
}
|
||
|
switch (transform.name) {
|
||
|
case 'translate':
|
||
|
// [1, 0, 0, 1, tx, ty]
|
||
|
return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
|
||
|
case 'scale':
|
||
|
// [sx, 0, 0, sy, 0, 0]
|
||
|
return [
|
||
|
transform.data[0],
|
||
|
0,
|
||
|
0,
|
||
|
transform.data[1] || transform.data[0],
|
||
|
0,
|
||
|
0,
|
||
|
];
|
||
|
case 'rotate':
|
||
|
// [cos(a), sin(a), -sin(a), cos(a), x, y]
|
||
|
var cos = mth.cos(transform.data[0]),
|
||
|
sin = mth.sin(transform.data[0]),
|
||
|
cx = transform.data[1] || 0,
|
||
|
cy = transform.data[2] || 0;
|
||
|
return [
|
||
|
cos,
|
||
|
sin,
|
||
|
-sin,
|
||
|
cos,
|
||
|
(1 - cos) * cx + sin * cy,
|
||
|
(1 - cos) * cy - sin * cx,
|
||
|
];
|
||
|
case 'skewX':
|
||
|
// [1, 0, tan(a), 1, 0, 0]
|
||
|
return [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
|
||
|
case 'skewY':
|
||
|
// [1, tan(a), 0, 1, 0, 0]
|
||
|
return [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
|
||
|
default:
|
||
|
throw Error(`Unknown transform ${transform.name}`);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
|
||
|
* by the transformation matrix and use a singular value decomposition to represent in a form
|
||
|
* rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
|
||
|
* SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
|
||
|
*
|
||
|
* @type {(
|
||
|
* cursor: [x: number, y: number],
|
||
|
* arc: Array<number>,
|
||
|
* transform: Array<number>
|
||
|
* ) => Array<number>}
|
||
|
*/
|
||
|
exports.transformArc = (cursor, arc, transform) => {
|
||
|
const x = arc[5] - cursor[0];
|
||
|
const y = arc[6] - cursor[1];
|
||
|
let a = arc[0];
|
||
|
let b = arc[1];
|
||
|
const rot = (arc[2] * Math.PI) / 180;
|
||
|
const cos = Math.cos(rot);
|
||
|
const sin = Math.sin(rot);
|
||
|
// skip if radius is 0
|
||
|
if (a > 0 && b > 0) {
|
||
|
let h =
|
||
|
Math.pow(x * cos + y * sin, 2) / (4 * a * a) +
|
||
|
Math.pow(y * cos - x * sin, 2) / (4 * b * b);
|
||
|
if (h > 1) {
|
||
|
h = Math.sqrt(h);
|
||
|
a *= h;
|
||
|
b *= h;
|
||
|
}
|
||
|
}
|
||
|
const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
|
||
|
const m = multiplyTransformMatrices(transform, ellipse);
|
||
|
// Decompose the new ellipse matrix
|
||
|
const lastCol = m[2] * m[2] + m[3] * m[3];
|
||
|
const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
|
||
|
const root =
|
||
|
Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
|
||
|
|
||
|
if (!root) {
|
||
|
// circle
|
||
|
arc[0] = arc[1] = Math.sqrt(squareSum / 2);
|
||
|
arc[2] = 0;
|
||
|
} else {
|
||
|
const majorAxisSqr = (squareSum + root) / 2;
|
||
|
const minorAxisSqr = (squareSum - root) / 2;
|
||
|
const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
|
||
|
const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
|
||
|
const rowsSum = m[0] * m[2] + m[1] * m[3];
|
||
|
const term1 = m[0] * sub + m[2] * rowsSum;
|
||
|
const term2 = m[1] * sub + m[3] * rowsSum;
|
||
|
arc[0] = Math.sqrt(majorAxisSqr);
|
||
|
arc[1] = Math.sqrt(minorAxisSqr);
|
||
|
arc[2] =
|
||
|
(((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
|
||
|
Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) *
|
||
|
180) /
|
||
|
Math.PI;
|
||
|
}
|
||
|
|
||
|
if (transform[0] < 0 !== transform[3] < 0) {
|
||
|
// Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
|
||
|
arc[4] = 1 - arc[4];
|
||
|
}
|
||
|
|
||
|
return arc;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Multiply transformation matrices.
|
||
|
*
|
||
|
* @type {(a: Array<number>, b: Array<number>) => Array<number>}
|
||
|
*/
|
||
|
const multiplyTransformMatrices = (a, b) => {
|
||
|
return [
|
||
|
a[0] * b[0] + a[2] * b[1],
|
||
|
a[1] * b[0] + a[3] * b[1],
|
||
|
a[0] * b[2] + a[2] * b[3],
|
||
|
a[1] * b[2] + a[3] * b[3],
|
||
|
a[0] * b[4] + a[2] * b[5] + a[4],
|
||
|
a[1] * b[4] + a[3] * b[5] + a[5],
|
||
|
];
|
||
|
};
|