|
|
@ -13,15 +13,15 @@ base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1') |
|
|
|
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)) |
|
|
|
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path)) |
|
|
|
|
|
|
|
|
|
|
|
# Configure prompt parameters and initialise helper |
|
|
|
# Configure prompt parameters and initialise helper |
|
|
|
max_input_size = 256 |
|
|
|
max_input_size = 512 |
|
|
|
num_output = 256 |
|
|
|
num_output = 512 |
|
|
|
max_chunk_overlap = 10 |
|
|
|
max_chunk_overlap = 30 |
|
|
|
|
|
|
|
|
|
|
|
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) |
|
|
|
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) |
|
|
|
|
|
|
|
|
|
|
|
# Load documents from the 'data' directory |
|
|
|
# Load documents from the 'data' directory |
|
|
|
documents = SimpleDirectoryReader('data').load_data() |
|
|
|
documents = SimpleDirectoryReader('data').load_data() |
|
|
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit = 257) |
|
|
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit = 512) |
|
|
|
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context) |
|
|
|
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context) |
|
|
|
index.storage_context.persist(persist_dir="./storage") |
|
|
|
index.storage_context.persist(persist_dir="./storage") |
|
|
|
|
|
|
|
|
|
|
|