examples: add langchain-chroma example (#248)

swagger2
Ettore Di Giacinto 2 years ago committed by GitHub
parent 2488c445b6
commit 557ccc5ad8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 10
      examples/README.md
  2. 54
      examples/langchain-chroma/README.md
  3. 1
      examples/langchain-chroma/models/completion.tmpl
  4. 5
      examples/langchain-chroma/models/embeddings.yaml
  5. 16
      examples/langchain-chroma/models/gpt-3.5-turbo.yaml
  6. 4
      examples/langchain-chroma/models/gpt4all.tmpl
  7. 31
      examples/langchain-chroma/query.py
  8. 4
      examples/langchain-chroma/requirements.txt
  9. 28
      examples/langchain-chroma/store.py

@ -65,7 +65,7 @@ Run a slack bot which lets you talk directly with a model
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-bot/) [Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-bot/)
### Question answering on documents ### Question answering on documents with llama-index
_by [@mudler](https://github.com/mudler)_ _by [@mudler](https://github.com/mudler)_
@ -73,6 +73,14 @@ Shows how to integrate with [Llama-Index](https://gpt-index.readthedocs.io/en/st
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/) [Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/)
### Question answering on documents with langchain and chroma
_by [@mudler](https://github.com/mudler)_
Shows how to integrate with `Langchain` and `Chroma` to enable question answering on a set of documents.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma/)
### Template for Runpod.io ### Template for Runpod.io
_by [@fHachenberg](https://github.com/fHachenberg)_ _by [@fHachenberg](https://github.com/fHachenberg)_

@ -0,0 +1,54 @@
# Data query example
This example makes use of [langchain and chroma](https://blog.langchain.dev/langchain-chroma/) to enable question answering on a set of documents.
## Setup
Download the models and start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/query_data
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O models/bert
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --build
```
### Python requirements
```
pip install -r requirements.txt
```
### Create a storage
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
wget https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt
python store.py
```
After it finishes, a directory "storage" will be created with the vector index database.
## Query
We can now query the dataset.
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python query.py
# President Trump recently stated during a press conference regarding tax reform legislation that "we're getting rid of all these loopholes." He also mentioned that he wants to simplify the system further through changes such as increasing the standard deduction amount and making other adjustments aimed at reducing taxpayers' overall burden.
```
Keep in mind now things are hit or miss!

@ -0,0 +1,5 @@
name: text-embedding-ada-002
parameters:
model: bert
backend: bert-embeddings
embeddings: true

@ -0,0 +1,16 @@
name: gpt-3.5-turbo
parameters:
model: ggml-gpt4all-j
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all

@ -0,0 +1,4 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

@ -0,0 +1,31 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings()
# Now we can load the persisted database from disk, and use it as normal.
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
query = "What the president said about taxes ?"
print(qa.run(query))

@ -0,0 +1,4 @@
langchain==0.0.160
openai==0.27.6
chromadb==0.3.21
llama-index==0.6.2

@ -0,0 +1,28 @@
import os
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter,TokenTextSplitter,CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import VectorDBQA
from langchain.document_loaders import TextLoader
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# Load and process the text
loader = TextLoader('state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=70)
#text_splitter = TokenTextSplitter()
texts = text_splitter.split_documents(documents)
# Embed and store the texts
# Supplying a persist_directory will store the embeddings on disk
persist_directory = 'db'
embedding = OpenAIEmbeddings(model="text-embedding-ada-002")
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory)
vectordb.persist()
vectordb = None
Loading…
Cancel
Save