refactor: drop code dups (#234)

token_berts v1.9.0
Ettore Di Giacinto 2 years ago committed by GitHub
parent 59e3c02002
commit 85f0f8227d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 4
      README.md
  2. 2
      api/api_test.go
  3. 5
      api/config.go
  4. 10
      api/openai.go
  5. 158
      pkg/model/initializers.go
  6. 471
      pkg/model/loader.go

@ -73,7 +73,7 @@ Note: You might need to convert older models to the new format, see [here](https
A full example on how to run a rwkv model is in the [examples](https://github.com/go-skynet/LocalAI/tree/master/examples/rwkv).
Note: rwkv models have an associated tokenizer along that needs to be provided with it:
Note: rwkv models needs to specify the backend `rwkv` in the YAML config files and have an associated tokenizer along that needs to be provided with it:
```
36464540 -rw-r--r-- 1 mudler mudler 1.2G May 3 10:51 rwkv_small
@ -545,6 +545,7 @@ name: text-embedding-ada-002
parameters:
model: bert
embeddings: true
backend: "bert-embeddings"
```
There is an example available [here](https://github.com/go-skynet/LocalAI/tree/master/examples/query_data/).
@ -563,6 +564,7 @@ Download one of the models from https://huggingface.co/ggerganov/whisper.cpp/tre
```yaml
name: whisper-1
backend: whisper
parameters:
model: whisper-en
```

@ -79,7 +79,7 @@ var _ = Describe("API test", func() {
It("returns errors", func() {
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 10 errors occurred:"))
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 9 errors occurred:"))
})
})

@ -285,5 +285,10 @@ func readConfig(cm ConfigMerger, c *fiber.Ctx, loader *model.ModelLoader, debug
}
}
// Enforce debug flag if passed from CLI
if debug {
config.Debug = true
}
return config, input, nil
}

@ -12,8 +12,10 @@ import (
"path/filepath"
"strings"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/whisper"
whisperutil "github.com/go-skynet/LocalAI/pkg/whisper"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
@ -436,12 +438,14 @@ func transcriptEndpoint(cm ConfigMerger, debug bool, loader *model.ModelLoader,
log.Debug().Msgf("Audio file copied to: %+v", dst)
whisperModel, err := loader.WhisperLoader("whisper", config.Model)
whisperModel, err := loader.BackendLoader("whisper", config.Model, []llama.ModelOption{}, uint32(config.Threads))
if err != nil {
return c.Status(http.StatusBadRequest).JSON(fiber.Map{"error": err.Error()})
}
tr, err := whisper.Transcript(whisperModel, dst, input.Language)
w := whisperModel.(whisper.Model)
tr, err := whisperutil.Transcript(w, dst, input.Language)
if err != nil {
return c.Status(http.StatusBadRequest).JSON(fiber.Map{"error": err.Error()})
}

@ -0,0 +1,158 @@
package model
import (
"fmt"
"strings"
rwkv "github.com/donomii/go-rwkv.cpp"
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
bloomz "github.com/go-skynet/bloomz.cpp"
bert "github.com/go-skynet/go-bert.cpp"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/hashicorp/go-multierror"
gpt4all "github.com/nomic/gpt4all/gpt4all-bindings/golang"
"github.com/rs/zerolog/log"
)
const tokenizerSuffix = ".tokenizer.json"
const (
LlamaBackend = "llama"
BloomzBackend = "bloomz"
StableLMBackend = "stablelm"
DollyBackend = "dolly"
RedPajamaBackend = "redpajama"
Gpt2Backend = "gpt2"
Gpt4AllLlamaBackend = "gpt4all-llama"
Gpt4AllMptBackend = "gpt4all-mpt"
Gpt4AllJBackend = "gpt4all-j"
BertEmbeddingsBackend = "bert-embeddings"
RwkvBackend = "rwkv"
WhisperBackend = "whisper"
)
var backends []string = []string{
LlamaBackend,
Gpt4AllLlamaBackend,
Gpt4AllMptBackend,
Gpt4AllJBackend,
Gpt2Backend,
WhisperBackend,
RwkvBackend,
BloomzBackend,
StableLMBackend,
DollyBackend,
RedPajamaBackend,
BertEmbeddingsBackend,
}
var redPajama = func(modelFile string) (interface{}, error) {
return gpt2.NewRedPajama(modelFile)
}
var dolly = func(modelFile string) (interface{}, error) {
return gpt2.NewDolly(modelFile)
}
var stableLM = func(modelFile string) (interface{}, error) {
return gpt2.NewStableLM(modelFile)
}
var bertEmbeddings = func(modelFile string) (interface{}, error) {
return bert.New(modelFile)
}
var bloomzLM = func(modelFile string) (interface{}, error) {
return bloomz.New(modelFile)
}
var gpt2LM = func(modelFile string) (interface{}, error) {
return gpt2.New(modelFile)
}
var whisperModel = func(modelFile string) (interface{}, error) {
return whisper.New(modelFile)
}
func llamaLM(opts ...llama.ModelOption) func(string) (interface{}, error) {
return func(s string) (interface{}, error) {
return llama.New(s, opts...)
}
}
func gpt4allLM(opts ...gpt4all.ModelOption) func(string) (interface{}, error) {
return func(s string) (interface{}, error) {
return gpt4all.New(s, opts...)
}
}
func rwkvLM(tokenFile string, threads uint32) func(string) (interface{}, error) {
return func(s string) (interface{}, error) {
model := rwkv.LoadFiles(s, tokenFile, threads)
if model == nil {
return nil, fmt.Errorf("could not load model")
}
return model, nil
}
}
func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
switch strings.ToLower(backendString) {
case LlamaBackend:
return ml.LoadModel(modelFile, llamaLM(llamaOpts...))
case BloomzBackend:
return ml.LoadModel(modelFile, bloomzLM)
case StableLMBackend:
return ml.LoadModel(modelFile, stableLM)
case DollyBackend:
return ml.LoadModel(modelFile, dolly)
case RedPajamaBackend:
return ml.LoadModel(modelFile, redPajama)
case Gpt2Backend:
return ml.LoadModel(modelFile, gpt2LM)
case Gpt4AllLlamaBackend:
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.LLaMAType)))
case Gpt4AllMptBackend:
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.MPTType)))
case Gpt4AllJBackend:
return ml.LoadModel(modelFile, gpt4allLM(gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.GPTJType)))
case BertEmbeddingsBackend:
return ml.LoadModel(modelFile, bertEmbeddings)
case RwkvBackend:
return ml.LoadModel(modelFile, rwkvLM(modelFile+tokenizerSuffix, threads))
case WhisperBackend:
return ml.LoadModel(modelFile, whisperModel)
default:
return nil, fmt.Errorf("backend unsupported: %s", backendString)
}
}
func (ml *ModelLoader) GreedyLoader(modelFile string, llamaOpts []llama.ModelOption, threads uint32) (interface{}, error) {
log.Debug().Msgf("Loading models greedly")
ml.mu.Lock()
m, exists := ml.models[modelFile]
if exists {
ml.mu.Unlock()
return m, nil
}
ml.mu.Unlock()
var err error
for _, b := range backends {
if b == BloomzBackend || b == WhisperBackend || b == RwkvBackend { // do not autoload bloomz/whisper/rwkv
continue
}
log.Debug().Msgf("[%s] Attempting to load", b)
model, modelerr := ml.BackendLoader(b, modelFile, llamaOpts, threads)
if modelerr == nil && model != nil {
log.Debug().Msgf("[%s] Loads OK", b)
return model, nil
} else if modelerr != nil {
err = multierror.Append(err, modelerr)
log.Debug().Msgf("[%s] Fails: %s", b, modelerr.Error())
}
}
return nil, fmt.Errorf("could not load model - all backends returned error: %s", err.Error())
}

@ -10,14 +10,6 @@ import (
"sync"
"text/template"
rwkv "github.com/donomii/go-rwkv.cpp"
whisper "github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
bloomz "github.com/go-skynet/bloomz.cpp"
bert "github.com/go-skynet/go-bert.cpp"
gpt2 "github.com/go-skynet/go-gpt2.cpp"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/hashicorp/go-multierror"
gpt4all "github.com/nomic/gpt4all/gpt4all-bindings/golang"
"github.com/rs/zerolog/log"
)
@ -25,33 +17,15 @@ type ModelLoader struct {
ModelPath string
mu sync.Mutex
// TODO: this needs generics
models map[string]*llama.LLama
gptmodels map[string]*gpt4all.Model
gpt2models map[string]*gpt2.GPT2
gptstablelmmodels map[string]*gpt2.StableLM
dollymodels map[string]*gpt2.Dolly
redpajama map[string]*gpt2.RedPajama
rwkv map[string]*rwkv.RwkvState
bloomz map[string]*bloomz.Bloomz
bert map[string]*bert.Bert
models map[string]interface{}
promptsTemplates map[string]*template.Template
whisperModels map[string]whisper.Model
}
func NewModelLoader(modelPath string) *ModelLoader {
return &ModelLoader{
ModelPath: modelPath,
gpt2models: make(map[string]*gpt2.GPT2),
gptmodels: make(map[string]*gpt4all.Model),
gptstablelmmodels: make(map[string]*gpt2.StableLM),
dollymodels: make(map[string]*gpt2.Dolly),
redpajama: make(map[string]*gpt2.RedPajama),
models: make(map[string]*llama.LLama),
rwkv: make(map[string]*rwkv.RwkvState),
bloomz: make(map[string]*bloomz.Bloomz),
bert: make(map[string]*bert.Bert),
models: make(map[string]interface{}),
promptsTemplates: make(map[string]*template.Template),
whisperModels: make(map[string]whisper.Model),
}
}
@ -136,271 +110,11 @@ func (ml *ModelLoader) loadTemplateIfExists(modelName, modelFile string) error {
return nil
}
func (ml *ModelLoader) LoadRedPajama(modelName string) (*gpt2.RedPajama, error) {
func (ml *ModelLoader) LoadModel(modelName string, loader func(string) (interface{}, error)) (interface{}, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.redpajama[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt2.NewRedPajama(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.redpajama[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadDollyModel(modelName string) (*gpt2.Dolly, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.dollymodels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt2.NewDolly(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.dollymodels[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadStableLMModel(modelName string) (*gpt2.StableLM, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gptstablelmmodels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt2.NewStableLM(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gptstablelmmodels[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadBERT(modelName string) (*bert.Bert, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.bert[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := bert.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.bert[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadBloomz(modelName string) (*bloomz.Bloomz, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.bloomz[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := bloomz.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.bloomz[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadGPT2Model(modelName string) (*gpt2.GPT2, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gpt2models[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt2.New(modelFile)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gpt2models[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadGPT4AllModel(modelName string, opts ...gpt4all.ModelOption) (*gpt4all.Model, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.gptmodels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := gpt4all.New(modelFile, opts...)
if err != nil {
return nil, err
}
// If there is a prompt template, load it
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
return nil, err
}
ml.gptmodels[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadRWKV(modelName, tokenFile string, threads uint32) (*rwkv.RwkvState, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
log.Debug().Msgf("Loading model name: %s", modelName)
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.rwkv[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
tokenPath := filepath.Join(ml.ModelPath, tokenFile)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model := rwkv.LoadFiles(modelFile, tokenPath, threads)
if model == nil {
return nil, fmt.Errorf("could not load model")
}
ml.rwkv[modelName] = model
return model, nil
}
func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
log.Debug().Msgf("Loading model name: %s", modelName)
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist")
}
if m, ok := ml.models[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
@ -410,7 +124,7 @@ func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOptio
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := llama.New(modelFile, opts...)
model, err := loader(modelFile)
if err != nil {
return nil, err
}
@ -421,182 +135,5 @@ func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOptio
}
ml.models[modelName] = model
return model, err
}
func (ml *ModelLoader) LoadWhisperModel(modelName string) (whisper.Model, error) {
ml.mu.Lock()
defer ml.mu.Unlock()
// Check if we already have a loaded model
if !ml.ExistsInModelPath(modelName) {
return nil, fmt.Errorf("model does not exist -- %s", modelName)
}
if m, ok := ml.whisperModels[modelName]; ok {
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
return m, nil
}
// Load the model and keep it in memory for later use
modelFile := filepath.Join(ml.ModelPath, modelName)
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
model, err := whisper.New(modelFile)
if err != nil {
return nil, err
}
ml.whisperModels[modelName] = model
return model, err
}
const tokenizerSuffix = ".tokenizer.json"
var loadedModels map[string]interface{} = map[string]interface{}{}
var muModels sync.Mutex
func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
switch strings.ToLower(backendString) {
case "llama":
return ml.LoadLLaMAModel(modelFile, llamaOpts...)
case "bloomz":
return ml.LoadBloomz(modelFile)
case "stablelm":
return ml.LoadStableLMModel(modelFile)
case "dolly":
return ml.LoadDollyModel(modelFile)
case "redpajama":
return ml.LoadRedPajama(modelFile)
case "gpt2":
return ml.LoadGPT2Model(modelFile)
case "gpt4all-llama":
return ml.LoadGPT4AllModel(modelFile, gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.LLaMAType))
case "gpt4all-mpt":
return ml.LoadGPT4AllModel(modelFile, gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.MPTType))
case "gpt4all-j":
return ml.LoadGPT4AllModel(modelFile, gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.GPTJType))
case "bert-embeddings":
return ml.LoadBERT(modelFile)
case "rwkv":
return ml.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
default:
return nil, fmt.Errorf("backend unsupported: %s", backendString)
}
}
func (ml *ModelLoader) WhisperLoader(backendString string, modelFile string) (model whisper.Model, err error) {
//TODO expose more whisper options in next PR
switch strings.ToLower(backendString) {
case "whisper":
return ml.LoadWhisperModel(modelFile)
default:
return nil, fmt.Errorf("whisper backend unsupported: %s", backendString)
}
}
func (ml *ModelLoader) GreedyLoader(modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
updateModels := func(model interface{}) {
muModels.Lock()
defer muModels.Unlock()
loadedModels[modelFile] = model
}
muModels.Lock()
m, exists := loadedModels[modelFile]
if exists {
muModels.Unlock()
return m, nil
}
muModels.Unlock()
model, modelerr := ml.LoadLLaMAModel(modelFile, llamaOpts...)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadGPT4AllModel(modelFile, gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.GPTJType))
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadGPT4AllModel(modelFile, gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.LLaMAType))
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadGPT4AllModel(modelFile, gpt4all.SetThreads(int(threads)), gpt4all.SetModelType(gpt4all.MPTType))
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadGPT2Model(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadStableLMModel(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadDollyModel(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadRedPajama(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
// Do not autoload bloomz
//model, modelerr = ml.LoadBloomz(modelFile)
//if modelerr == nil {
// updateModels(model)
// return model, nil
//} else {
// err = multierror.Append(err, modelerr)
//}
model, modelerr = ml.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
model, modelerr = ml.LoadBERT(modelFile)
if modelerr == nil {
updateModels(model)
return model, nil
} else {
err = multierror.Append(err, modelerr)
}
return nil, fmt.Errorf("could not load model - all backends returned error: %s", err.Error())
}

Loading…
Cancel
Save