parent
d094381e5d
commit
ad301e6ed7
@ -0,0 +1 @@ |
|||||||
|
storage/ |
@ -0,0 +1,49 @@ |
|||||||
|
# Data query example |
||||||
|
|
||||||
|
This example makes use of [Llama-Index](https://gpt-index.readthedocs.io/en/stable/getting_started/installation.html) to enable question answering on a set of documents. |
||||||
|
|
||||||
|
It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html). |
||||||
|
|
||||||
|
## Requirements |
||||||
|
|
||||||
|
For this in order to work, you will need a model compatible with the `llama.cpp` backend. This is will not work with gpt4all. |
||||||
|
|
||||||
|
The example uses `WizardLM`. Edit the config files in `models/` accordingly to specify the model you use (change `HERE`). |
||||||
|
|
||||||
|
You will also need a training data set. Copy that over `data`. |
||||||
|
|
||||||
|
## Setup |
||||||
|
|
||||||
|
Start the API: |
||||||
|
|
||||||
|
```bash |
||||||
|
# Clone LocalAI |
||||||
|
git clone https://github.com/go-skynet/LocalAI |
||||||
|
|
||||||
|
cd LocalAI/examples/query_data |
||||||
|
|
||||||
|
# Copy your models, edit config files accordingly |
||||||
|
|
||||||
|
# start with docker-compose |
||||||
|
docker-compose up -d --build |
||||||
|
``` |
||||||
|
|
||||||
|
### Create a storage: |
||||||
|
|
||||||
|
```bash |
||||||
|
export OPENAI_API_BASE=http://localhost:8080/v1 |
||||||
|
export OPENAI_API_KEY=sk- |
||||||
|
|
||||||
|
python store.py |
||||||
|
``` |
||||||
|
|
||||||
|
After it finishes, a directory "storage" will be created with the vector index database. |
||||||
|
|
||||||
|
## Query |
||||||
|
|
||||||
|
```bash |
||||||
|
export OPENAI_API_BASE=http://localhost:8080/v1 |
||||||
|
export OPENAI_API_KEY=sk- |
||||||
|
|
||||||
|
python query.py |
||||||
|
``` |
@ -0,0 +1,15 @@ |
|||||||
|
version: '3.6' |
||||||
|
|
||||||
|
services: |
||||||
|
api: |
||||||
|
image: quay.io/go-skynet/local-ai:latest |
||||||
|
build: |
||||||
|
context: . |
||||||
|
dockerfile: Dockerfile |
||||||
|
ports: |
||||||
|
- 8080:8080 |
||||||
|
env_file: |
||||||
|
- .env |
||||||
|
volumes: |
||||||
|
- ./models:/models:cached |
||||||
|
command: ["/usr/bin/local-ai"] |
@ -0,0 +1 @@ |
|||||||
|
{{.Input}} |
@ -0,0 +1,18 @@ |
|||||||
|
name: text-embedding-ada-002 |
||||||
|
parameters: |
||||||
|
model: HERE |
||||||
|
top_k: 80 |
||||||
|
temperature: 0.2 |
||||||
|
top_p: 0.7 |
||||||
|
context_size: 1024 |
||||||
|
threads: 14 |
||||||
|
stopwords: |
||||||
|
- "HUMAN:" |
||||||
|
- "GPT:" |
||||||
|
roles: |
||||||
|
user: " " |
||||||
|
system: " " |
||||||
|
embeddings: true |
||||||
|
template: |
||||||
|
completion: completion |
||||||
|
chat: gpt4all |
@ -0,0 +1,18 @@ |
|||||||
|
name: gpt-3.5-turbo |
||||||
|
parameters: |
||||||
|
model: HERE |
||||||
|
top_k: 80 |
||||||
|
temperature: 0.2 |
||||||
|
top_p: 0.7 |
||||||
|
context_size: 1024 |
||||||
|
threads: 14 |
||||||
|
embeddings: true |
||||||
|
stopwords: |
||||||
|
- "HUMAN:" |
||||||
|
- "GPT:" |
||||||
|
roles: |
||||||
|
user: " " |
||||||
|
system: " " |
||||||
|
template: |
||||||
|
completion: completion |
||||||
|
chat: wizardlm |
@ -0,0 +1,3 @@ |
|||||||
|
{{.Input}} |
||||||
|
|
||||||
|
### Response: |
@ -0,0 +1,32 @@ |
|||||||
|
import os |
||||||
|
|
||||||
|
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended) |
||||||
|
# os.environ['OPENAI_API_KEY']= "" |
||||||
|
|
||||||
|
from llama_index import LLMPredictor, PromptHelper, ServiceContext |
||||||
|
from langchain.llms.openai import OpenAI |
||||||
|
from llama_index import StorageContext, load_index_from_storage |
||||||
|
|
||||||
|
|
||||||
|
# This example uses text-davinci-003 by default; feel free to change if desired |
||||||
|
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo",openai_api_base="http://localhost:8080/v1")) |
||||||
|
|
||||||
|
# Configure prompt parameters and initialise helper |
||||||
|
max_input_size = 1024 |
||||||
|
num_output = 256 |
||||||
|
max_chunk_overlap = 20 |
||||||
|
|
||||||
|
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) |
||||||
|
|
||||||
|
# Load documents from the 'data' directory |
||||||
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) |
||||||
|
|
||||||
|
# rebuild storage context |
||||||
|
storage_context = StorageContext.from_defaults(persist_dir='./storage') |
||||||
|
|
||||||
|
# load index |
||||||
|
index = load_index_from_storage(storage_context, service_context=service_context, ) |
||||||
|
|
||||||
|
query_engine = index.as_query_engine() |
||||||
|
response = query_engine.query("XXXXXX your question here XXXXX") |
||||||
|
print(response) |
@ -0,0 +1,25 @@ |
|||||||
|
import os |
||||||
|
|
||||||
|
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended) |
||||||
|
# os.environ['OPENAI_API_KEY']= "" |
||||||
|
|
||||||
|
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext |
||||||
|
from langchain.llms.openai import OpenAI |
||||||
|
from llama_index import StorageContext, load_index_from_storage |
||||||
|
|
||||||
|
# This example uses text-davinci-003 by default; feel free to change if desired |
||||||
|
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo",openai_api_base="http://localhost:8080/v1")) |
||||||
|
|
||||||
|
# Configure prompt parameters and initialise helper |
||||||
|
max_input_size = 256 |
||||||
|
num_output = 256 |
||||||
|
max_chunk_overlap = 10 |
||||||
|
|
||||||
|
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap) |
||||||
|
|
||||||
|
# Load documents from the 'data' directory |
||||||
|
documents = SimpleDirectoryReader('data').load_data() |
||||||
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit = 257) |
||||||
|
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context) |
||||||
|
index.storage_context.persist(persist_dir="./storage") |
||||||
|
|
Loading…
Reference in new issue