|
|
|
@ -16,46 +16,125 @@ import ( |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
type OpenAIResponse struct { |
|
|
|
|
Created int `json:"created"` |
|
|
|
|
Object string `json:"chat.completion"` |
|
|
|
|
ID string `json:"id"` |
|
|
|
|
Model string `json:"model"` |
|
|
|
|
Choices []Choice `json:"choices"` |
|
|
|
|
Created int `json:"created,omitempty"` |
|
|
|
|
Object string `json:"chat.completion,omitempty"` |
|
|
|
|
ID string `json:"id,omitempty"` |
|
|
|
|
Model string `json:"model,omitempty"` |
|
|
|
|
Choices []Choice `json:"choices,omitempty"` |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
type Choice struct { |
|
|
|
|
Index int `json:"index"` |
|
|
|
|
FinishReason string `json:"finish_reason"` |
|
|
|
|
Message Message `json:"message"` |
|
|
|
|
Index int `json:"index,omitempty"` |
|
|
|
|
FinishReason string `json:"finish_reason,omitempty"` |
|
|
|
|
Message Message `json:"message,omitempty"` |
|
|
|
|
Text string `json:"text,omitempty"` |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
type Message struct { |
|
|
|
|
Role string `json:"role"` |
|
|
|
|
Content string `json:"content"` |
|
|
|
|
Role string `json:"role,omitempty"` |
|
|
|
|
Content string `json:"content,omitempty"` |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//go:embed index.html
|
|
|
|
|
var indexHTML embed.FS |
|
|
|
|
|
|
|
|
|
func api(defaultModel *llama.LLama, loader *ModelLoader, listenAddr string, threads int) error { |
|
|
|
|
app := fiber.New() |
|
|
|
|
func completionEndpoint(defaultModel *llama.LLama, loader *ModelLoader, threads int, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error { |
|
|
|
|
return func(c *fiber.Ctx) error { |
|
|
|
|
|
|
|
|
|
// Default middleware config
|
|
|
|
|
app.Use(recover.New()) |
|
|
|
|
app.Use(cors.New()) |
|
|
|
|
var err error |
|
|
|
|
var model *llama.LLama |
|
|
|
|
|
|
|
|
|
app.Use("/", filesystem.New(filesystem.Config{ |
|
|
|
|
Root: http.FS(indexHTML), |
|
|
|
|
NotFoundFile: "index.html", |
|
|
|
|
})) |
|
|
|
|
// Get input data from the request body
|
|
|
|
|
input := new(struct { |
|
|
|
|
Model string `json:"model"` |
|
|
|
|
Prompt string `json:"prompt"` |
|
|
|
|
}) |
|
|
|
|
if err := c.BodyParser(input); err != nil { |
|
|
|
|
return err |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
|
|
|
var mutex = &sync.Mutex{} |
|
|
|
|
mu := map[string]*sync.Mutex{} |
|
|
|
|
var mumutex = &sync.Mutex{} |
|
|
|
|
if input.Model == "" { |
|
|
|
|
if defaultModel == nil { |
|
|
|
|
return fmt.Errorf("no default model loaded, and no model specified") |
|
|
|
|
} |
|
|
|
|
model = defaultModel |
|
|
|
|
} else { |
|
|
|
|
model, err = loader.LoadModel(input.Model) |
|
|
|
|
if err != nil { |
|
|
|
|
return err |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// openAI compatible API endpoint
|
|
|
|
|
app.Post("/v1/chat/completions", func(c *fiber.Ctx) error { |
|
|
|
|
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
|
|
|
if input.Model != "" { |
|
|
|
|
mutexMap.Lock() |
|
|
|
|
l, ok := mutexes[input.Model] |
|
|
|
|
if !ok { |
|
|
|
|
m := &sync.Mutex{} |
|
|
|
|
mutexes[input.Model] = m |
|
|
|
|
l = m |
|
|
|
|
} |
|
|
|
|
mutexMap.Unlock() |
|
|
|
|
l.Lock() |
|
|
|
|
defer l.Unlock() |
|
|
|
|
} else { |
|
|
|
|
defaultMutex.Lock() |
|
|
|
|
defer defaultMutex.Unlock() |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Set the parameters for the language model prediction
|
|
|
|
|
topP, err := strconv.ParseFloat(c.Query("topP", "0.9"), 64) // Default value of topP is 0.9
|
|
|
|
|
if err != nil { |
|
|
|
|
return err |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
topK, err := strconv.Atoi(c.Query("topK", "40")) // Default value of topK is 40
|
|
|
|
|
if err != nil { |
|
|
|
|
return err |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
temperature, err := strconv.ParseFloat(c.Query("temperature", "0.5"), 64) // Default value of temperature is 0.5
|
|
|
|
|
if err != nil { |
|
|
|
|
return err |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
tokens, err := strconv.Atoi(c.Query("tokens", "128")) // Default value of tokens is 128
|
|
|
|
|
if err != nil { |
|
|
|
|
return err |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
predInput := input.Prompt |
|
|
|
|
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
|
|
|
|
templatedInput, err := loader.TemplatePrefix(input.Model, struct { |
|
|
|
|
Input string |
|
|
|
|
}{Input: input.Prompt}) |
|
|
|
|
if err == nil { |
|
|
|
|
predInput = templatedInput |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Generate the prediction using the language model
|
|
|
|
|
prediction, err := model.Predict( |
|
|
|
|
predInput, |
|
|
|
|
llama.SetTemperature(temperature), |
|
|
|
|
llama.SetTopP(topP), |
|
|
|
|
llama.SetTopK(topK), |
|
|
|
|
llama.SetTokens(tokens), |
|
|
|
|
llama.SetThreads(threads), |
|
|
|
|
) |
|
|
|
|
if err != nil { |
|
|
|
|
return err |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Return the prediction in the response body
|
|
|
|
|
return c.JSON(OpenAIResponse{ |
|
|
|
|
Model: input.Model, |
|
|
|
|
Choices: []Choice{{Text: prediction}}, |
|
|
|
|
}) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
func chatEndpoint(defaultModel *llama.LLama, loader *ModelLoader, threads int, defaultMutex *sync.Mutex, mutexMap *sync.Mutex, mutexes map[string]*sync.Mutex) func(c *fiber.Ctx) error { |
|
|
|
|
return func(c *fiber.Ctx) error { |
|
|
|
|
|
|
|
|
|
var err error |
|
|
|
|
var model *llama.LLama |
|
|
|
@ -64,7 +143,6 @@ func api(defaultModel *llama.LLama, loader *ModelLoader, listenAddr string, thre |
|
|
|
|
input := new(struct { |
|
|
|
|
Messages []Message `json:"messages"` |
|
|
|
|
Model string `json:"model"` |
|
|
|
|
Prompt string `json:"prompt"` |
|
|
|
|
}) |
|
|
|
|
if err := c.BodyParser(input); err != nil { |
|
|
|
|
return err |
|
|
|
@ -84,19 +162,19 @@ func api(defaultModel *llama.LLama, loader *ModelLoader, listenAddr string, thre |
|
|
|
|
|
|
|
|
|
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
|
|
|
if input.Model != "" { |
|
|
|
|
mumutex.Lock() |
|
|
|
|
l, ok := mu[input.Model] |
|
|
|
|
mutexMap.Lock() |
|
|
|
|
l, ok := mutexes[input.Model] |
|
|
|
|
if !ok { |
|
|
|
|
m := &sync.Mutex{} |
|
|
|
|
mu[input.Model] = m |
|
|
|
|
mutexes[input.Model] = m |
|
|
|
|
l = m |
|
|
|
|
} |
|
|
|
|
mumutex.Unlock() |
|
|
|
|
mutexMap.Unlock() |
|
|
|
|
l.Lock() |
|
|
|
|
defer l.Unlock() |
|
|
|
|
} else { |
|
|
|
|
mutex.Lock() |
|
|
|
|
defer mutex.Unlock() |
|
|
|
|
defaultMutex.Lock() |
|
|
|
|
defer defaultMutex.Unlock() |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Set the parameters for the language model prediction
|
|
|
|
@ -127,16 +205,12 @@ func api(defaultModel *llama.LLama, loader *ModelLoader, listenAddr string, thre |
|
|
|
|
|
|
|
|
|
predInput := strings.Join(mess, "\n") |
|
|
|
|
|
|
|
|
|
if input.Prompt == "" { |
|
|
|
|
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
|
|
|
|
templatedInput, err := loader.TemplatePrefix(input.Model, struct { |
|
|
|
|
Input string |
|
|
|
|
}{Input: predInput}) |
|
|
|
|
if err == nil { |
|
|
|
|
predInput = templatedInput |
|
|
|
|
} |
|
|
|
|
} else { |
|
|
|
|
predInput = input.Prompt + predInput |
|
|
|
|
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
|
|
|
|
|
templatedInput, err := loader.TemplatePrefix(input.Model, struct { |
|
|
|
|
Input string |
|
|
|
|
}{Input: predInput}) |
|
|
|
|
if err == nil { |
|
|
|
|
predInput = templatedInput |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Generate the prediction using the language model
|
|
|
|
@ -157,7 +231,29 @@ func api(defaultModel *llama.LLama, loader *ModelLoader, listenAddr string, thre |
|
|
|
|
Model: input.Model, |
|
|
|
|
Choices: []Choice{{Message: Message{Role: "assistant", Content: prediction}}}, |
|
|
|
|
}) |
|
|
|
|
}) |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
func api(defaultModel *llama.LLama, loader *ModelLoader, listenAddr string, threads int) error { |
|
|
|
|
app := fiber.New() |
|
|
|
|
|
|
|
|
|
// Default middleware config
|
|
|
|
|
app.Use(recover.New()) |
|
|
|
|
app.Use(cors.New()) |
|
|
|
|
|
|
|
|
|
app.Use("/", filesystem.New(filesystem.Config{ |
|
|
|
|
Root: http.FS(indexHTML), |
|
|
|
|
NotFoundFile: "index.html", |
|
|
|
|
})) |
|
|
|
|
|
|
|
|
|
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
|
|
|
|
|
var mutex = &sync.Mutex{} |
|
|
|
|
mu := map[string]*sync.Mutex{} |
|
|
|
|
var mumutex = &sync.Mutex{} |
|
|
|
|
|
|
|
|
|
// openAI compatible API endpoint
|
|
|
|
|
app.Post("/v1/chat/completions", chatEndpoint(defaultModel, loader, threads, mutex, mumutex, mu)) |
|
|
|
|
app.Post("/v1/completions", completionEndpoint(defaultModel, loader, threads, mutex, mumutex, mu)) |
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
curl --location --request POST 'http://localhost:8080/predict' --header 'Content-Type: application/json' --data-raw '{
|
|
|
|
|