Compare commits

..

No commits in common. 'master' and 'swagger2' have entirely different histories.

  1. 3
      .devcontainer/Dockerfile
  2. 46
      .devcontainer/devcontainer.json
  3. 26
      .devcontainer/docker-compose.yml
  4. 1
      .dockerignore
  5. 21
      .env
  6. 5
      .github/FUNDING.yml
  7. 12
      .github/workflows/bump_deps.yaml
  8. 135
      .github/workflows/image.yml
  9. 11
      .github/workflows/release.yaml
  10. 28
      .github/workflows/test.yml
  11. 20
      .gitignore
  12. 2
      .vscode/launch.json
  13. 126
      Dockerfile
  14. 20
      Dockerfile.dev
  15. 2
      LICENSE
  16. 340
      Makefile
  17. 1049
      README.md
  18. 132
      api/api.go
  19. 430
      api/api_test.go
  20. 109
      api/backend/embeddings.go
  21. 68
      api/backend/image.go
  22. 124
      api/backend/llm.go
  23. 22
      api/backend/lock.go
  24. 72
      api/backend/options.go
  25. 42
      api/backend/transcript.go
  26. 72
      api/backend/tts.go
  27. 329
      api/config.go
  28. 209
      api/config/config.go
  29. 56
      api/config/config_test.go
  30. 37
      api/config/prediction.go
  31. 196
      api/gallery.go
  32. 30
      api/gallery_test.go
  33. 224
      api/localai/gallery.go
  34. 31
      api/localai/localai.go
  35. 678
      api/openai.go
  36. 105
      api/openai/api.go
  37. 322
      api/openai/chat.go
  38. 159
      api/openai/completion.go
  39. 67
      api/openai/edit.go
  40. 70
      api/openai/embeddings.go
  41. 158
      api/openai/image.go
  42. 36
      api/openai/inference.go
  43. 37
      api/openai/list.go
  44. 234
      api/openai/request.go
  45. 71
      api/openai/transcription.go
  46. 108
      api/options.go
  47. 186
      api/options/options.go
  48. 561
      api/prediction.go
  49. 6
      assets.go
  50. 22
      cmd/grpc/bert-embeddings/main.go
  51. 23
      cmd/grpc/bloomz/main.go
  52. 23
      cmd/grpc/dolly/main.go
  53. 23
      cmd/grpc/falcon-ggml/main.go
  54. 25
      cmd/grpc/falcon/main.go
  55. 23
      cmd/grpc/gpt2/main.go
  56. 23
      cmd/grpc/gpt4all/main.go
  57. 23
      cmd/grpc/gptj/main.go
  58. 23
      cmd/grpc/gptneox/main.go
  59. 23
      cmd/grpc/langchain-huggingface/main.go
  60. 25
      cmd/grpc/llama-grammar/main.go
  61. 25
      cmd/grpc/llama/main.go
  62. 23
      cmd/grpc/mpt/main.go
  63. 23
      cmd/grpc/piper/main.go
  64. 23
      cmd/grpc/replit/main.go
  65. 23
      cmd/grpc/rwkv/main.go
  66. 23
      cmd/grpc/stablediffusion/main.go
  67. 23
      cmd/grpc/starcoder/main.go
  68. 23
      cmd/grpc/whisper/main.go
  69. 2
      docker-compose.yaml
  70. 14
      entrypoint.sh
  71. 51
      examples/README.md
  72. 5
      examples/autoGPT/.env
  73. 32
      examples/autoGPT/README.md
  74. 42
      examples/autoGPT/docker-compose.yaml
  75. 48
      examples/chatbot-ui-manual/README.md
  76. 24
      examples/chatbot-ui-manual/docker-compose.yaml
  77. 12
      examples/chatbot-ui/README.md
  78. 17
      examples/chatbot-ui/docker-compose.yaml
  79. 0
      examples/chatbot-ui/models/completion.tmpl
  80. 0
      examples/chatbot-ui/models/gpt-3.5-turbo.yaml
  81. 0
      examples/chatbot-ui/models/gpt4all.tmpl
  82. 2
      examples/discord-bot/docker-compose.yaml
  83. 30
      examples/flowise/README.md
  84. 37
      examples/flowise/docker-compose.yaml
  85. 9
      examples/functions/.env
  86. 5
      examples/functions/Dockerfile
  87. 18
      examples/functions/README.md
  88. 23
      examples/functions/docker-compose.yaml
  89. 76
      examples/functions/functions-openai.py
  90. 2
      examples/functions/requirements.txt
  91. 70
      examples/k8sgpt/README.md
  92. 14
      examples/k8sgpt/broken-pod.yaml
  93. 95
      examples/k8sgpt/values.yaml
  94. 68
      examples/langchain-huggingface/README.md
  95. 15
      examples/langchain-huggingface/docker-compose.yml
  96. 1
      examples/langchain-huggingface/models/completion.tmpl
  97. 17
      examples/langchain-huggingface/models/gpt-3.5-turbo.yaml
  98. 4
      examples/langchain-huggingface/models/gpt4all.tmpl
  99. 9
      examples/langchain-python/README.md
  100. 13
      examples/langchain-python/docker-compose.yaml
  101. Some files were not shown because too many files have changed in this diff Show More

@ -0,0 +1,3 @@
ARG GO_VERSION=1.20
FROM mcr.microsoft.com/devcontainers/go:0-$GO_VERSION-bullseye
RUN apt-get update && apt-get install -y cmake

@ -0,0 +1,46 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/docker-existing-docker-compose
{
"name": "Existing Docker Compose (Extend)",
// Update the 'dockerComposeFile' list if you have more compose files or use different names.
// The .devcontainer/docker-compose.yml file contains any overrides you need/want to make.
"dockerComposeFile": [
"../docker-compose.yaml",
"docker-compose.yml"
],
// The 'service' property is the name of the service for the container that VS Code should
// use. Update this value and .devcontainer/docker-compose.yml to the real service name.
"service": "api",
// The optional 'workspaceFolder' property is the path VS Code should open by default when
// connected. This is typically a file mount in .devcontainer/docker-compose.yml
"workspaceFolder": "/workspace",
"features": {
"ghcr.io/devcontainers/features/go:1": {},
"ghcr.io/azutake/devcontainer-features/go-packages-install:0": {}
},
// Features to add to the dev container. More info: https://containers.dev/features.
// "features": {},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Uncomment the next line if you want start specific services in your Docker Compose config.
// "runServices": [],
// Uncomment the next line if you want to keep your containers running after VS Code shuts down.
// "shutdownAction": "none",
// Uncomment the next line to run commands after the container is created.
"postCreateCommand": "make prepare"
// Configure tool-specific properties.
// "customizations": {},
// Uncomment to connect as an existing user other than the container default. More info: https://aka.ms/dev-containers-non-root.
// "remoteUser": "devcontainer"
}

@ -0,0 +1,26 @@
version: '3.6'
services:
# Update this to the name of the service you want to work with in your docker-compose.yml file
api:
# Uncomment if you want to override the service's Dockerfile to one in the .devcontainer
# folder. Note that the path of the Dockerfile and context is relative to the *primary*
# docker-compose.yml file (the first in the devcontainer.json "dockerComposeFile"
# array). The sample below assumes your primary file is in the root of your project.
#
build:
context: .
dockerfile: .devcontainer/Dockerfile
volumes:
# Update this to wherever you want VS Code to mount the folder of your project
- .:/workspace:cached
# Uncomment the next four lines if you will use a ptrace-based debugger like C++, Go, and Rust.
# cap_add:
# - SYS_PTRACE
# security_opt:
# - seccomp:unconfined
# Overrides default command so things don't shut down after the process ends.
command: /bin/sh -c "while sleep 1000; do :; done"

@ -1,4 +1,3 @@
.idea
models
examples/chatbot-ui/models
examples/rwkv/models

21
.env

@ -7,33 +7,20 @@
## Default models context size
# CONTEXT_SIZE=512
#
## Define galleries.
## models will to install will be visible in `/models/available`
# GALLERIES=[{"name":"model-gallery", "url":"github:go-skynet/model-gallery/index.yaml"}]
## CORS settings
# CORS=true
# CORS_ALLOW_ORIGINS=*
## Default path for models
#
MODELS_PATH=/models
## Enable debug mode
# DEBUG=true
## Specify a build type. Available: cublas, openblas, clblas.
## Specify a build type. Available: cublas, openblas.
# BUILD_TYPE=openblas
## Uncomment and set to true to enable rebuilding from source
# REBUILD=true
## Uncomment and set to false to disable rebuilding from source
# REBUILD=false
## Enable go tags, available: stablediffusion, tts
## stablediffusion: image generation with stablediffusion
## tts: enables text-to-speech with go-piper
## (requires REBUILD=true)
#
## Enable image generation with stablediffusion (requires REBUILD=true)
# GO_TAGS=stablediffusion
## Path where to store generated images

@ -1,5 +0,0 @@
# These are supported funding model platforms
github: [mudler]
custom:
- https://www.buymeacoffee.com/mudler

@ -12,9 +12,6 @@ jobs:
- repository: "go-skynet/go-llama.cpp"
variable: "GOLLAMA_VERSION"
branch: "master"
- repository: "go-skynet/go-llama.cpp"
variable: "GOLLAMA_GRAMMAR_VERSION"
branch: "master"
- repository: "go-skynet/go-ggml-transformers.cpp"
variable: "GOGGMLTRANSFORMERS_VERSION"
branch: "master"
@ -33,15 +30,6 @@ jobs:
- repository: "nomic-ai/gpt4all"
variable: "GPT4ALL_VERSION"
branch: "main"
- repository: "mudler/go-ggllm.cpp"
variable: "GOGGLLM_VERSION"
branch: "master"
- repository: "mudler/go-stable-diffusion"
variable: "STABLEDIFFUSION_VERSION"
branch: "master"
- repository: "mudler/go-piper"
variable: "PIPER_VERSION"
branch: "master"
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

@ -15,97 +15,34 @@ concurrency:
jobs:
docker:
strategy:
matrix:
include:
- build-type: ''
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'auto'
tag-suffix: ''
ffmpeg: ''
- build-type: 'cublas'
cuda-major-version: 11
cuda-minor-version: 7
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11'
ffmpeg: ''
- build-type: 'cublas'
cuda-major-version: 12
cuda-minor-version: 1
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12'
ffmpeg: ''
- build-type: ''
platforms: 'linux/amd64,linux/arm64'
tag-latest: 'false'
tag-suffix: '-ffmpeg'
ffmpeg: 'true'
- build-type: 'cublas'
cuda-major-version: 11
cuda-minor-version: 7
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda11-ffmpeg'
ffmpeg: 'true'
- build-type: 'cublas'
cuda-major-version: 12
cuda-minor-version: 1
platforms: 'linux/amd64'
tag-latest: 'false'
tag-suffix: '-cublas-cuda12-ffmpeg'
ffmpeg: 'true'
runs-on: ubuntu-latest
steps:
- name: Release space from worker
run: |
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
df -h
echo
sudo apt-get remove -y '^llvm-.*|^libllvm.*' || true
sudo apt-get remove --auto-remove android-sdk-platform-tools || true
sudo apt-get purge --auto-remove android-sdk-platform-tools || true
sudo rm -rf /usr/local/lib/android
sudo apt-get remove -y '^dotnet-.*|^aspnetcore-.*' || true
sudo rm -rf /usr/share/dotnet
sudo apt-get remove -y '^mono-.*' || true
sudo apt-get remove -y '^ghc-.*' || true
sudo apt-get remove -y '.*jdk.*|.*jre.*' || true
sudo apt-get remove -y 'php.*' || true
sudo apt-get remove -y hhvm powershell firefox monodoc-manual msbuild || true
sudo apt-get remove -y '^google-.*' || true
sudo apt-get remove -y azure-cli || true
sudo apt-get remove -y '^mongo.*-.*|^postgresql-.*|^mysql-.*|^mssql-.*' || true
sudo apt-get remove -y '^gfortran-.*' || true
sudo apt-get autoremove -y
sudo apt-get clean
echo
echo "Listing top largest packages"
pkgs=$(dpkg-query -Wf '${Installed-Size}\t${Package}\t${Status}\n' | awk '$NF == "installed"{print $1 "\t" $2}' | sort -nr)
head -n 30 <<< "${pkgs}"
echo
sudo rm -rfv build || true
df -h
- name: Checkout
uses: actions/checkout@v3
- name: Docker meta
id: meta
uses: docker/metadata-action@v4
with:
images: quay.io/go-skynet/local-ai
tags: |
type=ref,event=branch
type=semver,pattern={{raw}}
type=sha
flavor: |
latest=${{ matrix.tag-latest }}
suffix=${{ matrix.tag-suffix }}
- name: Prepare
id: prep
run: |
DOCKER_IMAGE=quay.io/go-skynet/local-ai
VERSION=master
SHORTREF=${GITHUB_SHA::8}
# If this is git tag, use the tag name as a docker tag
if [[ $GITHUB_REF == refs/tags/* ]]; then
VERSION=${GITHUB_REF#refs/tags/}
fi
TAGS="${DOCKER_IMAGE}:${VERSION},${DOCKER_IMAGE}:${SHORTREF}"
# If the VERSION looks like a version number, assume that
# this is the most recent version of the image and also
# tag it 'latest'.
if [[ $VERSION =~ ^v[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ ]]; then
TAGS="$TAGS,${DOCKER_IMAGE}:latest"
fi
# Set output parameters.
echo ::set-output name=tags::${TAGS}
echo ::set-output name=docker_image::${DOCKER_IMAGE}
- name: Set up QEMU
uses: docker/setup-qemu-action@master
@ -123,19 +60,23 @@ jobs:
registry: quay.io
username: ${{ secrets.LOCALAI_REGISTRY_USERNAME }}
password: ${{ secrets.LOCALAI_REGISTRY_PASSWORD }}
- name: Build and push
- name: Build
if: github.event_name != 'pull_request'
uses: docker/build-push-action@v4
with:
builder: ${{ steps.buildx.outputs.name }}
context: .
file: ./Dockerfile
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.prep.outputs.tags }}
- name: Build PRs
if: github.event_name == 'pull_request'
uses: docker/build-push-action@v4
with:
builder: ${{ steps.buildx.outputs.name }}
build-args: |
BUILD_TYPE=${{ matrix.build-type }}
CUDA_MAJOR_VERSION=${{ matrix.cuda-major-version }}
CUDA_MINOR_VERSION=${{ matrix.cuda-minor-version }}
FFMPEG=${{ matrix.ffmpeg }}
context: .
file: ./Dockerfile
platforms: ${{ matrix.platforms }}
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
platforms: linux/amd64
push: false
tags: ${{ steps.prep.outputs.tags }}

@ -29,10 +29,10 @@ jobs:
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
CMAKE_ARGS: "${{ matrix.define }}"
BUILD_ID: "${{ matrix.build }}"
run: |
STATIC=true make dist
make dist
- uses: actions/upload-artifact@v3
with:
name: ${{ matrix.build }}
@ -60,10 +60,15 @@ jobs:
uses: actions/checkout@v3
with:
submodules: true
- name: Dependencies
run: |
brew update
brew install sdl2 ffmpeg
- name: Build
id: build
env:
CMAKE_ARGS: "${{ matrix.defines }}"
CMAKE_ARGS: "${{ matrix.define }}"
BUILD_ID: "${{ matrix.build }}"
run: |
make dist

@ -26,29 +26,9 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install build-essential ffmpeg
sudo apt-get install -y ca-certificates cmake curl patch
sudo apt-get install -y libopencv-dev && sudo ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
sudo pip install -r extra/requirements.txt
sudo mkdir /build && sudo chmod -R 777 /build && cd /build && \
curl -L "https://github.com/gabime/spdlog/archive/refs/tags/v1.11.0.tar.gz" | \
tar -xzvf - && \
mkdir -p "spdlog-1.11.0/build" && \
cd "spdlog-1.11.0/build" && \
cmake .. && \
make -j8 && \
sudo cmake --install . --prefix /usr && mkdir -p "lib/Linux-$(uname -m)" && \
cd /build && \
mkdir -p "lib/Linux-$(uname -m)/piper_phonemize" && \
curl -L "https://github.com/rhasspy/piper-phonemize/releases/download/v1.0.0/libpiper_phonemize-amd64.tar.gz" | \
tar -C "lib/Linux-$(uname -m)/piper_phonemize" -xzvf - && ls -liah /build/lib/Linux-$(uname -m)/piper_phonemize/ && \
sudo cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/lib/. /lib64/ && \
sudo cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/lib/. /usr/lib/ && \
sudo cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/include/. /usr/include/
- name: Test
run: |
ESPEAK_DATA="/build/lib/Linux-$(uname -m)/piper_phonemize/lib/espeak-ng-data" GO_TAGS="tts stablediffusion" make test
make test
macOS-latest:
runs-on: macOS-latest
@ -59,6 +39,10 @@ jobs:
with:
submodules: true
- name: Dependencies
run: |
brew update
brew install sdl2 ffmpeg
- name: Test
run: |
CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF" make test
make test

20
.gitignore vendored

@ -1,21 +1,10 @@
# go-llama build artifacts
go-llama
/gpt4all
gpt4all
go-stable-diffusion
go-piper
/go-bert
go-ggllm
/piper
__pycache__/
*.a
get-sources
go-ggml-transformers
go-gpt2
go-rwkv
whisper.cpp
/bloomz
go-bert
# LocalAI build binary
LocalAI
@ -26,15 +15,8 @@ local-ai
# Ignore models
models/*
test-models/
test-dir/
release/
# just in case
.DS_Store
.idea
# Generated during build
backend-assets/
/ggml-metal.metal

@ -25,7 +25,7 @@
],
"env": {
"C_INCLUDE_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
"LIBRARY_PATH": "${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
"LIBRARY_PATH": "$${workspaceFolder}/go-llama:${workspaceFolder}/go-stable-diffusion/:${workspaceFolder}/gpt4all/gpt4all-bindings/golang/:${workspaceFolder}/go-gpt2:${workspaceFolder}/go-rwkv:${workspaceFolder}/whisper.cpp:${workspaceFolder}/go-bert:${workspaceFolder}/bloomz",
"DEBUG": "true"
}
}

@ -1,125 +1,15 @@
ARG GO_VERSION=1.20-bullseye
FROM golang:$GO_VERSION as requirements
ARG BUILD_TYPE
ARG CUDA_MAJOR_VERSION=11
ARG CUDA_MINOR_VERSION=7
ARG SPDLOG_VERSION="1.11.0"
ARG PIPER_PHONEMIZE_VERSION='1.0.0'
ARG TARGETARCH
ARG TARGETVARIANT
ENV BUILD_TYPE=${BUILD_TYPE}
ENV EXTERNAL_GRPC_BACKENDS="huggingface-embeddings:/build/extra/grpc/huggingface/huggingface.py"
ARG GO_TAGS="stablediffusion tts"
RUN apt-get update && \
apt-get install -y ca-certificates cmake curl patch pip
# Extras requirements
COPY extra/requirements.txt /build/extra/requirements.txt
RUN pip install -r /build/extra/requirements.txt && rm -rf /build/extra/requirements.txt
# CuBLAS requirements
RUN if [ "${BUILD_TYPE}" = "cublas" ]; then \
apt-get install -y software-properties-common && \
apt-add-repository contrib && \
curl -O https://developer.download.nvidia.com/compute/cuda/repos/debian11/x86_64/cuda-keyring_1.0-1_all.deb && \
dpkg -i cuda-keyring_1.0-1_all.deb && \
rm -f cuda-keyring_1.0-1_all.deb && \
apt-get update && \
apt-get install -y cuda-nvcc-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} libcublas-dev-${CUDA_MAJOR_VERSION}-${CUDA_MINOR_VERSION} \
; fi
ENV PATH /usr/local/cuda/bin:${PATH}
ARG GO_VERSION=1.20
ARG BUILD_TYPE=
FROM golang:$GO_VERSION
ENV REBUILD=true
WORKDIR /build
# OpenBLAS requirements
RUN apt-get install -y libopenblas-dev
# Stable Diffusion requirements
RUN apt-get install -y libopencv-dev && \
ln -s /usr/include/opencv4/opencv2 /usr/include/opencv2
# Use the variables in subsequent instructions
RUN echo "Target Architecture: $TARGETARCH"
RUN echo "Target Variant: $TARGETVARIANT"
# piper requirements
# Use pre-compiled Piper phonemization library (includes onnxruntime)
#RUN if echo "${GO_TAGS}" | grep -q "tts"; then \
RUN test -n "$TARGETARCH" \
|| (echo 'warn: missing $TARGETARCH, either set this `ARG` manually, or run using `docker buildkit`')
RUN curl -L "https://github.com/gabime/spdlog/archive/refs/tags/v${SPDLOG_VERSION}.tar.gz" | \
tar -xzvf - && \
mkdir -p "spdlog-${SPDLOG_VERSION}/build" && \
cd "spdlog-${SPDLOG_VERSION}/build" && \
cmake .. && \
make -j8 && \
cmake --install . --prefix /usr && mkdir -p "lib/Linux-$(uname -m)" && \
cd /build && \
mkdir -p "lib/Linux-$(uname -m)/piper_phonemize" && \
curl -L "https://github.com/rhasspy/piper-phonemize/releases/download/v${PIPER_PHONEMIZE_VERSION}/libpiper_phonemize-${TARGETARCH:-$(go env GOARCH)}${TARGETVARIANT}.tar.gz" | \
tar -C "lib/Linux-$(uname -m)/piper_phonemize" -xzvf - && ls -liah /build/lib/Linux-$(uname -m)/piper_phonemize/ && \
cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/lib/. /lib64/ && \
cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/lib/. /usr/lib/ && \
cp -rfv /build/lib/Linux-$(uname -m)/piper_phonemize/include/. /usr/include/
# \
# ; fi
###################################
###################################
FROM requirements as builder
ARG GO_TAGS="stablediffusion tts"
ENV GO_TAGS=${GO_TAGS}
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=${CUDA_MAJOR_VERSION}.0"
ENV NVIDIA_VISIBLE_DEVICES=all
WORKDIR /build
COPY Makefile .
RUN make get-sources
COPY go.mod .
RUN make prepare
RUN apt-get update && apt-get install -y cmake curl libgomp1 libopenblas-dev libopenblas-base libopencv-dev libopencv-core-dev libopencv-core4.5 ca-certificates
COPY . .
COPY .git .
RUN ESPEAK_DATA=/build/lib/Linux-$(uname -m)/piper_phonemize/lib/espeak-ng-data make build
###################################
###################################
FROM requirements
ARG FFMPEG
ENV REBUILD=false
RUN ln -s /usr/include/opencv4/opencv2/ /usr/include/opencv2
RUN make build
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
# Add FFmpeg
RUN if [ "${FFMPEG}" = "true" ]; then \
apt-get install -y ffmpeg \
; fi
WORKDIR /build
# we start fresh & re-copy all assets because `make build` does not clean up nicely after itself
# so when `entrypoint.sh` runs `make build` again (which it does by default), the build would fail
# see https://github.com/go-skynet/LocalAI/pull/658#discussion_r1241971626 and
# https://github.com/go-skynet/LocalAI/pull/434
COPY . .
RUN make prepare-sources
COPY --from=builder /build/local-ai ./
# Define the health check command
HEALTHCHECK --interval=1m --timeout=10m --retries=10 \
HEALTHCHECK --interval=30s --timeout=360s --retries=10 \
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
EXPOSE 8080
ENTRYPOINT [ "/build/entrypoint.sh" ]

@ -0,0 +1,20 @@
ARG GO_VERSION=1.20
ARG DEBIAN_VERSION=11
ARG BUILD_TYPE=
FROM golang:$GO_VERSION as builder
WORKDIR /build
RUN apt-get update && apt-get install -y cmake libgomp1 libopenblas-dev libopenblas-base libopencv-dev libopencv-core-dev libopencv-core4.5
RUN ln -s /usr/include/opencv4/opencv2/ /usr/include/opencv2
COPY . .
RUN make build
FROM debian:$DEBIAN_VERSION
COPY --from=builder /build/local-ai /usr/bin/local-ai
RUN apt-get update && apt-get install -y ca-certificates curl
ENV HEALTHCHECK_ENDPOINT=http://localhost:8080/readyz
# Define the health check command
HEALTHCHECK --interval=30s --timeout=360s --retries=10 \
CMD curl -f $HEALTHCHECK_ENDPOINT || exit 1
EXPOSE 8080
ENTRYPOINT [ "/usr/bin/local-ai" ]

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Ettore Di Giacinto
Copyright (c) 2023 go-skynet authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

@ -3,62 +3,23 @@ GOTEST=$(GOCMD) test
GOVET=$(GOCMD) vet
BINARY_NAME=local-ai
# llama.cpp versions
# Temporarly pinned to https://github.com/go-skynet/go-llama.cpp/pull/124
GOLLAMA_VERSION?=f3a6ee0ef53d667f110d28fcf9b808bdca741c07
GOLLAMA_GRAMMAR_VERSION?=cb8d7cd4cb95725a04504a9e3a26dd72a12b69ac
# Temporary set a specific version of llama.cpp
# containing: https://github.com/ggerganov/llama.cpp/pull/1773 and
# rebased on top of master.
# This pin can be dropped when the PR above is merged, and go-llama has merged changes as well
# Set empty to use the version pinned by go-llama
LLAMA_CPP_GRAMMAR_REPO?=https://github.com/mudler/llama.cpp
LLAMA_CPP_GRAMMAR_VERSION?=48ce8722a05a018681634af801fd0fd45b3a87cc
# gpt4all version
GOLLAMA_VERSION?=8bd97d532e90cf34e755b3ea2d8aa17000443cf2
GPT4ALL_REPO?=https://github.com/nomic-ai/gpt4all
GPT4ALL_VERSION?=5f0aaf8bdb166ea3b5bfd578c2b19f61b583e6a9
# go-ggml-transformers version
GOGGMLTRANSFORMERS_VERSION?=ffb09d7dd71e2cbc6c5d7d05357d230eea6f369a
# go-rwkv version
GPT4ALL_VERSION?=810a3b12ccd0b0ee82b55d7ddbcb1db7d345dd06
GOGGMLTRANSFORMERS_VERSION?=c4c581f1853cf1b66276501c7c0dbea1e3e564b7
RWKV_REPO?=https://github.com/donomii/go-rwkv.cpp
RWKV_VERSION?=c898cd0f62df8f2a7830e53d1d513bef4f6f792b
# whisper.cpp version
WHISPER_CPP_VERSION?=85ed71aaec8e0612a84c0b67804bde75aa75a273
# bert.cpp version
BERT_VERSION?=6abe312cded14042f6b7c3cd8edf082713334a4d
# go-piper version
PIPER_VERSION?=56b8a81b4760a6fbee1a82e62f007ae7e8f010a7
# go-bloomz version
BLOOMZ_VERSION?=1834e77b83faafe912ad4092ccf7f77937349e2f
# stablediffusion version
STABLEDIFFUSION_VERSION?=d89260f598afb809279bc72aa0107b4292587632
# Go-ggllm
GOGGLLM_VERSION?=862477d16eefb0805261c19c9b0d053e3b2b684b
export BUILD_TYPE?=
RWKV_VERSION?=07166da10cb2a9e8854395a4f210464dcea76e47
WHISPER_CPP_VERSION?=77eab3fbfe5e5462021d92dd230076bba06eefbc
BERT_VERSION?=cea1ed76a7f48ef386a8e369f6c82c48cdf2d551
BLOOMZ_VERSION?=e9366e82abdfe70565644fbfae9651976714efd1
BUILD_TYPE?=
CGO_LDFLAGS?=
CUDA_LIBPATH?=/usr/local/cuda/lib64/
STABLEDIFFUSION_VERSION?=c0748eca3642d58bcf9521108bcee46959c647dc
GO_TAGS?=
BUILD_ID?=git
VERSION?=$(shell git describe --always --tags || echo "dev" )
# go tool nm ./local-ai | grep Commit
LD_FLAGS?=
override LD_FLAGS += -X "github.com/go-skynet/LocalAI/internal.Version=$(VERSION)"
override LD_FLAGS += -X "github.com/go-skynet/LocalAI/internal.Commit=$(shell git rev-parse HEAD)"
LD_FLAGS=?=
OPTIONAL_TARGETS?=
ESPEAK_DATA?=
OS := $(shell uname -s)
ARCH := $(shell uname -m)
@ -68,14 +29,8 @@ WHITE := $(shell tput -Txterm setaf 7)
CYAN := $(shell tput -Txterm setaf 6)
RESET := $(shell tput -Txterm sgr0)
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
# workaround for rwkv.cpp
ifeq ($(UNAME_S),Darwin)
CGO_LDFLAGS += -lcblas -framework Accelerate
endif
C_INCLUDE_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-stable-diffusion/:$(shell pwd)/gpt4all/gpt4all-bindings/golang/:$(shell pwd)/go-ggml-transformers:$(shell pwd)/go-rwkv:$(shell pwd)/whisper.cpp:$(shell pwd)/go-bert:$(shell pwd)/bloomz
LIBRARY_PATH=$(shell pwd)/go-llama:$(shell pwd)/go-stable-diffusion/:$(shell pwd)/gpt4all/gpt4all-bindings/golang/:$(shell pwd)/go-ggml-transformers:$(shell pwd)/go-rwkv:$(shell pwd)/whisper.cpp:$(shell pwd)/go-bert:$(shell pwd)/bloomz
ifeq ($(BUILD_TYPE),openblas)
CGO_LDFLAGS+=-lopenblas
@ -86,29 +41,13 @@ ifeq ($(BUILD_TYPE),cublas)
export LLAMA_CUBLAS=1
endif
ifeq ($(BUILD_TYPE),metal)
CGO_LDFLAGS+=-framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
export LLAMA_METAL=1
endif
ifeq ($(BUILD_TYPE),clblas)
CGO_LDFLAGS+=-lOpenCL -lclblast
endif
# glibc-static or glibc-devel-static required
ifeq ($(STATIC),true)
LD_FLAGS=-linkmode external -extldflags -static
endif
ifeq ($(findstring stablediffusion,$(GO_TAGS)),stablediffusion)
# OPTIONAL_TARGETS+=go-stable-diffusion/libstablediffusion.a
OPTIONAL_GRPC+=backend-assets/grpc/stablediffusion
endif
ifeq ($(findstring tts,$(GO_TAGS)),tts)
# OPTIONAL_TARGETS+=go-piper/libpiper_binding.a
# OPTIONAL_TARGETS+=backend-assets/espeak-ng-data
OPTIONAL_GRPC+=backend-assets/grpc/piper
ifeq ($(GO_TAGS),stablediffusion)
OPTIONAL_TARGETS+=go-stable-diffusion/libstablediffusion.a
endif
.PHONY: all test build vendor
@ -119,24 +58,31 @@ all: help
gpt4all:
git clone --recurse-submodules $(GPT4ALL_REPO) gpt4all
cd gpt4all && git checkout -b build $(GPT4ALL_VERSION) && git submodule update --init --recursive --depth 1
## go-ggllm
go-ggllm:
git clone --recurse-submodules https://github.com/mudler/go-ggllm.cpp go-ggllm
cd go-ggllm && git checkout -b build $(GOGGLLM_VERSION) && git submodule update --init --recursive --depth 1
go-ggllm/libggllm.a: go-ggllm
$(MAKE) -C go-ggllm BUILD_TYPE=$(BUILD_TYPE) libggllm.a
## go-piper
go-piper:
git clone --recurse-submodules https://github.com/mudler/go-piper go-piper
cd go-piper && git checkout -b build $(PIPER_VERSION) && git submodule update --init --recursive --depth 1
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./gpt4all -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gptj_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gptj_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/set_console_color/set_gptj_console_color/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/set_console_color/set_gptj_console_color/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.go" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.h" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.txt" -exec sed -i'' -e 's/llama_/gptjllama_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gptj_/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/void replace/void json_gptj_replace/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/::replace/::json_gptj_replace/g' {} +
@find ./gpt4all -type f -name "*.cpp" -exec sed -i'' -e 's/regex_escape/gpt4allregex_escape/g' {} +
mv ./gpt4all/gpt4all-backend/llama.cpp/llama_util.h ./gpt4all/gpt4all-backend/llama.cpp/gptjllama_util.h
## BERT embeddings
go-bert:
git clone --recurse-submodules https://github.com/go-skynet/go-bert.cpp go-bert
cd go-bert && git checkout -b build $(BERT_VERSION) && git submodule update --init --recursive --depth 1
@find ./go-bert -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
@find ./go-bert -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
@find ./go-bert -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_bert_/g' {} +
## stable diffusion
go-stable-diffusion:
@ -150,14 +96,21 @@ go-stable-diffusion/libstablediffusion.a:
go-rwkv:
git clone --recurse-submodules $(RWKV_REPO) go-rwkv
cd go-rwkv && git checkout -b build $(RWKV_VERSION) && git submodule update --init --recursive --depth 1
@find ./go-rwkv -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
@find ./go-rwkv -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
@find ./go-rwkv -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_rwkv_/g' {} +
go-rwkv/librwkv.a: go-rwkv
cd go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a ..
cd go-rwkv && cd rwkv.cpp && cmake . -DRWKV_BUILD_SHARED_LIBRARY=OFF && cmake --build . && cp librwkv.a .. && cp ggml/src/libggml.a ..
## bloomz
bloomz:
git clone --recurse-submodules https://github.com/go-skynet/bloomz.cpp bloomz
cd bloomz && git checkout -b build $(BLOOMZ_VERSION) && git submodule update --init --recursive --depth 1
@find ./bloomz -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
@find ./bloomz -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_bloomz_/g' {} +
@find ./bloomz -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_/gpt_bloomz_/g' {} +
@find ./bloomz -type f -name "*.h" -exec sed -i'' -e 's/gpt_/gpt_bloomz_/g' {} +
bloomz/libbloomz.a: bloomz
cd bloomz && make libbloomz.a
@ -165,21 +118,6 @@ bloomz/libbloomz.a: bloomz
go-bert/libgobert.a: go-bert
$(MAKE) -C go-bert libgobert.a
backend-assets/gpt4all: gpt4all/gpt4all-bindings/golang/libgpt4all.a
mkdir -p backend-assets/gpt4all
@cp gpt4all/gpt4all-bindings/golang/buildllm/*.so backend-assets/gpt4all/ || true
@cp gpt4all/gpt4all-bindings/golang/buildllm/*.dylib backend-assets/gpt4all/ || true
@cp gpt4all/gpt4all-bindings/golang/buildllm/*.dll backend-assets/gpt4all/ || true
backend-assets/espeak-ng-data:
mkdir -p backend-assets/espeak-ng-data
ifdef ESPEAK_DATA
@cp -rf $(ESPEAK_DATA)/. backend-assets/espeak-ng-data
else
@echo "ESPEAK_DATA not set, skipping tts. Note that this will break the tts functionality."
@touch backend-assets/espeak-ng-data/keep
endif
gpt4all/gpt4all-bindings/golang/libgpt4all.a: gpt4all
$(MAKE) -C gpt4all/gpt4all-bindings/golang/ libgpt4all.a
@ -187,13 +125,27 @@ gpt4all/gpt4all-bindings/golang/libgpt4all.a: gpt4all
go-ggml-transformers:
git clone --recurse-submodules https://github.com/go-skynet/go-ggml-transformers.cpp go-ggml-transformers
cd go-ggml-transformers && git checkout -b build $(GOGPT2_VERSION) && git submodule update --init --recursive --depth 1
# This is hackish, but needed as both go-llama and go-gpt4allj have their own version of ggml..
@find ./go-ggml-transformers -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_gpt2_/g' {} +
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_print_usage/gpt2_print_usage/g' {} +
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/gpt_print_usage/gpt2_print_usage/g' {} +
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_params_parse/gpt2_params_parse/g' {} +
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/gpt_params_parse/gpt2_params_parse/g' {} +
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/gpt_random_prompt/gpt2_random_prompt/g' {} +
@find ./go-ggml-transformers -type f -name "*.h" -exec sed -i'' -e 's/gpt_random_prompt/gpt2_random_prompt/g' {} +
@find ./go-ggml-transformers -type f -name "*.cpp" -exec sed -i'' -e 's/json_/json_gpt2_/g' {} +
go-ggml-transformers/libtransformers.a: go-ggml-transformers
$(MAKE) -C go-ggml-transformers BUILD_TYPE=$(BUILD_TYPE) libtransformers.a
$(MAKE) -C go-ggml-transformers libtransformers.a
whisper.cpp:
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp && git checkout -b build $(WHISPER_CPP_VERSION) && git submodule update --init --recursive --depth 1
@find ./whisper.cpp -type f -name "*.c" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
@find ./whisper.cpp -type f -name "*.cpp" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
@find ./whisper.cpp -type f -name "*.h" -exec sed -i'' -e 's/ggml_/ggml_whisper_/g' {} +
whisper.cpp/libwhisper.a: whisper.cpp
cd whisper.cpp && make libwhisper.a
@ -202,28 +154,11 @@ go-llama:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama
cd go-llama && git checkout -b build $(GOLLAMA_VERSION) && git submodule update --init --recursive --depth 1
go-llama-grammar:
git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp go-llama-grammar
cd go-llama-grammar && git checkout -b build $(GOLLAMA_GRAMMAR_VERSION) && git submodule update --init --recursive --depth 1
ifneq ($(LLAMA_CPP_GRAMMAR_REPO),)
cd go-llama-grammar && rm -rf llama.cpp && git clone $(LLAMA_CPP_GRAMMAR_REPO) llama.cpp && cd llama.cpp && git checkout -b build $(LLAMA_CPP_GRAMMAR_VERSION) && git submodule update --init --recursive --depth 1
endif
go-llama/libbinding.a: go-llama
$(MAKE) -C go-llama BUILD_TYPE=$(BUILD_TYPE) libbinding.a
go-llama-grammar/libbinding.a: go-llama-grammar
$(MAKE) -C go-llama-grammar BUILD_TYPE=$(BUILD_TYPE) libbinding.a
go-piper/libpiper_binding.a:
$(MAKE) -C go-piper libpiper_binding.a example/main
get-sources: go-llama go-ggllm go-llama-grammar go-ggml-transformers gpt4all go-piper go-rwkv whisper.cpp go-bert bloomz go-stable-diffusion
touch $@
replace:
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp=$(shell pwd)/go-llama
$(GOCMD) mod edit -replace github.com/go-skynet/go-llama.cpp-grammar=$(shell pwd)/go-llama-grammar
$(GOCMD) mod edit -replace github.com/nomic-ai/gpt4all/gpt4all-bindings/golang=$(shell pwd)/gpt4all/gpt4all-bindings/golang
$(GOCMD) mod edit -replace github.com/go-skynet/go-ggml-transformers.cpp=$(shell pwd)/go-ggml-transformers
$(GOCMD) mod edit -replace github.com/donomii/go-rwkv.cpp=$(shell pwd)/go-rwkv
@ -231,17 +166,13 @@ replace:
$(GOCMD) mod edit -replace github.com/go-skynet/go-bert.cpp=$(shell pwd)/go-bert
$(GOCMD) mod edit -replace github.com/go-skynet/bloomz.cpp=$(shell pwd)/bloomz
$(GOCMD) mod edit -replace github.com/mudler/go-stable-diffusion=$(shell pwd)/go-stable-diffusion
$(GOCMD) mod edit -replace github.com/mudler/go-piper=$(shell pwd)/go-piper
$(GOCMD) mod edit -replace github.com/mudler/go-ggllm.cpp=$(shell pwd)/go-ggllm
prepare-sources: get-sources replace
prepare-sources: go-llama go-ggml-transformers gpt4all go-rwkv whisper.cpp go-bert bloomz go-stable-diffusion replace
$(GOCMD) mod download
## GENERIC
rebuild: ## Rebuilds the project
$(GOCMD) clean -cache
$(MAKE) -C go-llama clean
$(MAKE) -C go-llama-grammar clean
$(MAKE) -C gpt4all/gpt4all-bindings/golang/ clean
$(MAKE) -C go-ggml-transformers clean
$(MAKE) -C go-rwkv clean
@ -249,47 +180,40 @@ rebuild: ## Rebuilds the project
$(MAKE) -C go-stable-diffusion clean
$(MAKE) -C go-bert clean
$(MAKE) -C bloomz clean
$(MAKE) -C go-piper clean
$(MAKE) -C go-ggllm clean
$(MAKE) build
prepare: prepare-sources $(OPTIONAL_TARGETS)
touch $@
prepare: prepare-sources gpt4all/gpt4all-bindings/golang/libgpt4all.a $(OPTIONAL_TARGETS) go-llama/libbinding.a go-bert/libgobert.a go-ggml-transformers/libtransformers.a go-rwkv/librwkv.a whisper.cpp/libwhisper.a bloomz/libbloomz.a ## Prepares for building
clean: ## Remove build related file
$(GOCMD) clean -cache
rm -fr ./go-llama
rm -rf ./gpt4all
rm -rf ./go-gpt2
rm -rf ./go-stable-diffusion
rm -rf ./go-ggml-transformers
rm -rf ./backend-assets
rm -rf ./go-rwkv
rm -rf ./go-bert
rm -rf ./bloomz
rm -rf ./whisper.cpp
rm -rf ./go-piper
rm -rf ./go-ggllm
rm -rf $(BINARY_NAME)
rm -rf release/
## Build:
build: grpcs prepare ## Build the project
build: prepare ## Build the project
$(info ${GREEN}I local-ai build info:${RESET})
$(info ${GREEN}I BUILD_TYPE: ${YELLOW}$(BUILD_TYPE)${RESET})
$(info ${GREEN}I GO_TAGS: ${YELLOW}$(GO_TAGS)${RESET})
$(info ${GREEN}I LD_FLAGS: ${YELLOW}$(LD_FLAGS)${RESET})
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o $(BINARY_NAME) ./
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -x -o $(BINARY_NAME) ./
dist: build
mkdir -p release
cp $(BINARY_NAME) release/$(BINARY_NAME)-$(BUILD_ID)-$(OS)-$(ARCH)
generic-build: ## Build the project using generic
BUILD_TYPE="generic" $(MAKE) build
## Run
run: prepare ## run local-ai
CGO_LDFLAGS="$(CGO_LDFLAGS)" $(GOCMD) run ./
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} $(GOCMD) run ./main.go
test-models/testmodel:
mkdir test-models
@ -298,44 +222,13 @@ test-models/testmodel:
wget https://huggingface.co/ggerganov/whisper.cpp/resolve/main/ggml-base.en.bin -O test-models/whisper-en
wget https://huggingface.co/skeskinen/ggml/resolve/main/all-MiniLM-L6-v2/ggml-model-q4_0.bin -O test-models/bert
wget https://cdn.openai.com/whisper/draft-20220913a/micro-machines.wav -O test-dir/audio.wav
wget https://huggingface.co/mudler/rwkv-4-raven-1.5B-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%2525-Other1%2525-20230425-ctx4096_Q4_0.bin -O test-models/rwkv
wget https://huggingface.co/imxcstar/rwkv-4-raven-ggml/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%25-Other1%25-20230425-ctx4096-16_Q4_2.bin -O test-models/rwkv
wget https://raw.githubusercontent.com/saharNooby/rwkv.cpp/5eb8f09c146ea8124633ab041d9ea0b1f1db4459/rwkv/20B_tokenizer.json -O test-models/rwkv.tokenizer.json
cp tests/models_fixtures/* test-models
prepare-test: grpcs
cp -rf backend-assets api
test: prepare test-models/testmodel
cp tests/models_fixtures/* test-models
test: prepare test-models/testmodel grpcs
@echo 'Running tests'
export GO_TAGS="tts stablediffusion"
$(MAKE) prepare-test
HUGGINGFACE_GRPC=$(abspath ./)/extra/grpc/huggingface/huggingface.py TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="!gpt4all && !llama" --flake-attempts 5 -v -r ./api ./pkg
$(MAKE) test-gpt4all
$(MAKE) test-llama
$(MAKE) test-tts
$(MAKE) test-stablediffusion
test-gpt4all: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="gpt4all" --flake-attempts 5 -v -r ./api ./pkg
test-llama: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="llama" --flake-attempts 5 -v -r ./api ./pkg
test-tts: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="tts" --flake-attempts 1 -v -r ./api ./pkg
test-stablediffusion: prepare-test
TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models \
$(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --label-filter="stablediffusion" --flake-attempts 1 -v -r ./api ./pkg
test-container:
docker build --target requirements -t local-ai-test-container .
docker run -ti --rm --entrypoint /bin/bash -ti -v $(abspath ./):/build local-ai-test-container
C_INCLUDE_PATH=${C_INCLUDE_PATH} LIBRARY_PATH=${LIBRARY_PATH} TEST_DIR=$(abspath ./)/test-dir/ FIXTURES=$(abspath ./)/tests/fixtures CONFIG_FILE=$(abspath ./)/test-models/config.yaml MODELS_PATH=$(abspath ./)/test-models $(GOCMD) run github.com/onsi/ginkgo/v2/ginkgo --flakeAttempts 5 -v -r ./api ./pkg
## Help:
help: ## Show this help.
@ -348,98 +241,3 @@ help: ## Show this help.
if (/^[a-zA-Z_-]+:.*?##.*$$/) {printf " ${YELLOW}%-20s${GREEN}%s${RESET}\n", $$1, $$2} \
else if (/^## .*$$/) {printf " ${CYAN}%s${RESET}\n", substr($$1,4)} \
}' $(MAKEFILE_LIST)
protogen: protogen-go protogen-python
protogen-go:
protoc --go_out=. --go_opt=paths=source_relative --go-grpc_out=. --go-grpc_opt=paths=source_relative \
pkg/grpc/proto/backend.proto
protogen-python:
python -m grpc_tools.protoc -Ipkg/grpc/proto/ --python_out=extra/grpc/huggingface/ --grpc_python_out=extra/grpc/huggingface/ pkg/grpc/proto/backend.proto
## GRPC
backend-assets/grpc:
mkdir -p backend-assets/grpc
backend-assets/grpc/falcon: backend-assets/grpc go-ggllm/libggllm.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggllm LIBRARY_PATH=$(shell pwd)/go-ggllm \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/falcon ./cmd/grpc/falcon/
backend-assets/grpc/llama: backend-assets/grpc go-llama/libbinding.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-llama LIBRARY_PATH=$(shell pwd)/go-llama \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama ./cmd/grpc/llama/
# TODO: every binary should have its own folder instead, so can have different metal implementations
ifeq ($(BUILD_TYPE),metal)
cp go-llama/build/bin/ggml-metal.metal backend-assets/grpc/
endif
backend-assets/grpc/llama-grammar: backend-assets/grpc go-llama-grammar/libbinding.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-llama-grammar LIBRARY_PATH=$(shell pwd)/go-llama-grammar \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/llama-grammar ./cmd/grpc/llama-grammar/
backend-assets/grpc/gpt4all: backend-assets/grpc backend-assets/gpt4all gpt4all/gpt4all-bindings/golang/libgpt4all.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/gpt4all/gpt4all-bindings/golang/ LIBRARY_PATH=$(shell pwd)/gpt4all/gpt4all-bindings/golang/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt4all ./cmd/grpc/gpt4all/
backend-assets/grpc/dolly: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/dolly ./cmd/grpc/dolly/
backend-assets/grpc/gpt2: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gpt2 ./cmd/grpc/gpt2/
backend-assets/grpc/gptj: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gptj ./cmd/grpc/gptj/
backend-assets/grpc/gptneox: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/gptneox ./cmd/grpc/gptneox/
backend-assets/grpc/mpt: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/mpt ./cmd/grpc/mpt/
backend-assets/grpc/replit: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/replit ./cmd/grpc/replit/
backend-assets/grpc/falcon-ggml: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/falcon-ggml ./cmd/grpc/falcon-ggml/
backend-assets/grpc/starcoder: backend-assets/grpc go-ggml-transformers/libtransformers.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-ggml-transformers LIBRARY_PATH=$(shell pwd)/go-ggml-transformers \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/starcoder ./cmd/grpc/starcoder/
backend-assets/grpc/rwkv: backend-assets/grpc go-rwkv/librwkv.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-rwkv LIBRARY_PATH=$(shell pwd)/go-rwkv \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/rwkv ./cmd/grpc/rwkv/
backend-assets/grpc/bloomz: backend-assets/grpc bloomz/libbloomz.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/bloomz LIBRARY_PATH=$(shell pwd)/bloomz \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bloomz ./cmd/grpc/bloomz/
backend-assets/grpc/bert-embeddings: backend-assets/grpc go-bert/libgobert.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-bert LIBRARY_PATH=$(shell pwd)/go-bert \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/bert-embeddings ./cmd/grpc/bert-embeddings/
backend-assets/grpc/langchain-huggingface: backend-assets/grpc
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/langchain-huggingface ./cmd/grpc/langchain-huggingface/
backend-assets/grpc/stablediffusion: backend-assets/grpc go-stable-diffusion/libstablediffusion.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/go-stable-diffusion/ LIBRARY_PATH=$(shell pwd)/go-stable-diffusion/ \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/stablediffusion ./cmd/grpc/stablediffusion/
backend-assets/grpc/piper: backend-assets/grpc backend-assets/espeak-ng-data go-piper/libpiper_binding.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" LIBRARY_PATH=$(shell pwd)/go-piper \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/piper ./cmd/grpc/piper/
backend-assets/grpc/whisper: backend-assets/grpc whisper.cpp/libwhisper.a
CGO_LDFLAGS="$(CGO_LDFLAGS)" C_INCLUDE_PATH=$(shell pwd)/whisper.cpp LIBRARY_PATH=$(shell pwd)/whisper.cpp \
$(GOCMD) build -ldflags "$(LD_FLAGS)" -tags "$(GO_TAGS)" -o backend-assets/grpc/whisper ./cmd/grpc/whisper/
grpcs: prepare backend-assets/grpc/langchain-huggingface backend-assets/grpc/llama-grammar backend-assets/grpc/falcon-ggml backend-assets/grpc/bert-embeddings backend-assets/grpc/falcon backend-assets/grpc/bloomz backend-assets/grpc/llama backend-assets/grpc/gpt4all backend-assets/grpc/dolly backend-assets/grpc/gpt2 backend-assets/grpc/gptj backend-assets/grpc/gptneox backend-assets/grpc/mpt backend-assets/grpc/replit backend-assets/grpc/starcoder backend-assets/grpc/rwkv backend-assets/grpc/whisper $(OPTIONAL_GRPC)

File diff suppressed because it is too large Load Diff

@ -3,13 +3,6 @@ package api
import (
"errors"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/localai"
"github.com/go-skynet/LocalAI/api/openai"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/internal"
"github.com/go-skynet/LocalAI/pkg/assets"
"github.com/gofiber/fiber/v2"
"github.com/gofiber/fiber/v2/middleware/cors"
"github.com/gofiber/fiber/v2/middleware/logger"
@ -18,18 +11,18 @@ import (
"github.com/rs/zerolog/log"
)
func App(opts ...options.AppOption) (*fiber.App, error) {
options := options.NewOptions(opts...)
func App(opts ...AppOption) *fiber.App {
options := newOptions(opts...)
zerolog.SetGlobalLevel(zerolog.InfoLevel)
if options.Debug {
if options.debug {
zerolog.SetGlobalLevel(zerolog.DebugLevel)
}
// Return errors as JSON responses
app := fiber.New(fiber.Config{
BodyLimit: options.UploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: options.DisableMessage,
BodyLimit: options.uploadLimitMB * 1024 * 1024, // this is the default limit of 4MB
DisableStartupMessage: options.disableMessage,
// Override default error handler
ErrorHandler: func(ctx *fiber.Ctx, err error) error {
// Status code defaults to 500
@ -43,122 +36,82 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
// Send custom error page
return ctx.Status(code).JSON(
openai.ErrorResponse{
Error: &openai.APIError{Message: err.Error(), Code: code},
ErrorResponse{
Error: &APIError{Message: err.Error(), Code: code},
},
)
},
})
if options.Debug {
if options.debug {
app.Use(logger.New(logger.Config{
Format: "[${ip}]:${port} ${status} - ${method} ${path}\n",
}))
}
log.Info().Msgf("Starting LocalAI using %d threads, with models path: %s", options.Threads, options.Loader.ModelPath)
log.Info().Msgf("LocalAI version: %s", internal.PrintableVersion())
cm := config.NewConfigLoader()
if err := cm.LoadConfigs(options.Loader.ModelPath); err != nil {
cm := NewConfigMerger()
if err := cm.LoadConfigs(options.loader.ModelPath); err != nil {
log.Error().Msgf("error loading config files: %s", err.Error())
}
if options.ConfigFile != "" {
if err := cm.LoadConfigFile(options.ConfigFile); err != nil {
if options.configFile != "" {
if err := cm.LoadConfigFile(options.configFile); err != nil {
log.Error().Msgf("error loading config file: %s", err.Error())
}
}
if options.Debug {
if options.debug {
for _, v := range cm.ListConfigs() {
cfg, _ := cm.GetConfig(v)
log.Debug().Msgf("Model: %s (config: %+v)", v, cfg)
}
}
if options.AssetsDestination != "" {
// Extract files from the embedded FS
err := assets.ExtractFiles(options.BackendAssets, options.AssetsDestination)
log.Debug().Msgf("Extracting backend assets files to %s", options.AssetsDestination)
if err != nil {
log.Warn().Msgf("Failed extracting backend assets files: %s (might be required for some backends to work properly, like gpt4all)", err)
}
}
// Default middleware config
app.Use(recover.New())
if options.PreloadJSONModels != "" {
if err := localai.ApplyGalleryFromString(options.Loader.ModelPath, options.PreloadJSONModels, cm, options.Galleries); err != nil {
return nil, err
}
}
if options.PreloadModelsFromPath != "" {
if err := localai.ApplyGalleryFromFile(options.Loader.ModelPath, options.PreloadModelsFromPath, cm, options.Galleries); err != nil {
return nil, err
}
}
if options.CORS {
var c func(ctx *fiber.Ctx) error
if options.CORSAllowOrigins == "" {
c = cors.New()
if options.cors {
if options.corsAllowOrigins == "" {
app.Use(cors.New())
} else {
c = cors.New(cors.Config{AllowOrigins: options.CORSAllowOrigins})
app.Use(cors.New(cors.Config{
AllowOrigins: options.corsAllowOrigins,
}))
}
app.Use(c)
}
// LocalAI API endpoints
galleryService := localai.NewGalleryService(options.Loader.ModelPath)
galleryService.Start(options.Context, cm)
app.Get("/version", func(c *fiber.Ctx) error {
return c.JSON(struct {
Version string `json:"version"`
}{Version: internal.PrintableVersion()})
})
app.Post("/models/apply", localai.ApplyModelGalleryEndpoint(options.Loader.ModelPath, cm, galleryService.C, options.Galleries))
app.Get("/models/available", localai.ListModelFromGalleryEndpoint(options.Galleries, options.Loader.ModelPath))
app.Get("/models/jobs/:uuid", localai.GetOpStatusEndpoint(galleryService))
applier := newGalleryApplier(options.loader.ModelPath)
applier.start(options.context, cm)
app.Post("/models/apply", applyModelGallery(options.loader.ModelPath, cm, applier.C))
app.Get("/models/jobs/:uuid", getOpStatus(applier))
// openAI compatible API endpoint
// chat
app.Post("/v1/chat/completions", openai.ChatEndpoint(cm, options))
app.Post("/chat/completions", openai.ChatEndpoint(cm, options))
app.Post("/v1/chat/completions", chatEndpoint(cm, options))
app.Post("/chat/completions", chatEndpoint(cm, options))
// edit
app.Post("/v1/edits", openai.EditEndpoint(cm, options))
app.Post("/edits", openai.EditEndpoint(cm, options))
app.Post("/v1/edits", editEndpoint(cm, options))
app.Post("/edits", editEndpoint(cm, options))
// completion
app.Post("/v1/completions", openai.CompletionEndpoint(cm, options))
app.Post("/completions", openai.CompletionEndpoint(cm, options))
app.Post("/v1/engines/:model/completions", openai.CompletionEndpoint(cm, options))
app.Post("/v1/completions", completionEndpoint(cm, options))
app.Post("/completions", completionEndpoint(cm, options))
// embeddings
app.Post("/v1/embeddings", openai.EmbeddingsEndpoint(cm, options))
app.Post("/embeddings", openai.EmbeddingsEndpoint(cm, options))
app.Post("/v1/engines/:model/embeddings", openai.EmbeddingsEndpoint(cm, options))
app.Post("/v1/embeddings", embeddingsEndpoint(cm, options))
app.Post("/embeddings", embeddingsEndpoint(cm, options))
app.Post("/v1/engines/:model/embeddings", embeddingsEndpoint(cm, options))
// audio
app.Post("/v1/audio/transcriptions", openai.TranscriptEndpoint(cm, options))
app.Post("/tts", localai.TTSEndpoint(cm, options))
app.Post("/v1/audio/transcriptions", transcriptEndpoint(cm, options))
// images
app.Post("/v1/images/generations", openai.ImageEndpoint(cm, options))
app.Post("/v1/images/generations", imageEndpoint(cm, options))
if options.ImageDir != "" {
app.Static("/generated-images", options.ImageDir)
}
if options.AudioDir != "" {
app.Static("/generated-audio", options.AudioDir)
if options.imageDir != "" {
app.Static("/generated-images", options.imageDir)
}
ok := func(c *fiber.Ctx) error {
@ -170,15 +123,8 @@ func App(opts ...options.AppOption) (*fiber.App, error) {
app.Get("/readyz", ok)
// models
app.Get("/v1/models", openai.ListModelsEndpoint(options.Loader, cm))
app.Get("/models", openai.ListModelsEndpoint(options.Loader, cm))
// turn off any process that was started by GRPC if the context is canceled
go func() {
<-options.Context.Done()
log.Debug().Msgf("Context canceled, shutting down")
options.Loader.StopGRPC()
}()
app.Get("/v1/models", listModels(options.loader, cm))
app.Get("/models", listModels(options.loader, cm))
return app, nil
return app
}

@ -3,11 +3,8 @@ package api_test
import (
"bytes"
"context"
"embed"
"encoding/json"
"errors"
"fmt"
"io"
"io/ioutil"
"net/http"
"os"
@ -15,10 +12,7 @@ import (
"runtime"
. "github.com/go-skynet/LocalAI/api"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
@ -26,11 +20,9 @@ import (
openaigo "github.com/otiai10/openaigo"
"github.com/sashabaranov/go-openai"
"github.com/sashabaranov/go-openai/jsonschema"
)
type modelApplyRequest struct {
ID string `json:"id"`
URL string `json:"url"`
Name string `json:"name"`
Overrides map[string]string `json:"overrides"`
@ -59,15 +51,6 @@ func getModelStatus(url string) (response map[string]interface{}) {
}
return
}
func getModels(url string) (response []gallery.GalleryModel) {
utils.GetURI(url, func(url string, i []byte) error {
// Unmarshal YAML data into a struct
return json.Unmarshal(i, &response)
})
return
}
func postModelApplyRequest(url string, request modelApplyRequest) (response map[string]interface{}) {
//url := "http://localhost:AI/models/apply"
@ -112,9 +95,6 @@ func postModelApplyRequest(url string, request modelApplyRequest) (response map[
return
}
//go:embed backend-assets/*
var backendAssets embed.FS
var _ = Describe("API test", func() {
var app *fiber.App
@ -125,11 +105,6 @@ var _ = Describe("API test", func() {
var cancel context.CancelFunc
var tmpdir string
commonOpts := []options.AppOption{
options.WithDebug(true),
options.WithDisableMessage(true),
}
Context("API with ephemeral models", func() {
BeforeEach(func() {
var err error
@ -139,36 +114,7 @@ var _ = Describe("API test", func() {
modelLoader = model.NewModelLoader(tmpdir)
c, cancel = context.WithCancel(context.Background())
g := []gallery.GalleryModel{
{
Name: "bert",
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
},
{
Name: "bert2",
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
Overrides: map[string]interface{}{"foo": "bar"},
AdditionalFiles: []gallery.File{{Filename: "foo.yaml", URI: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml"}},
},
}
out, err := yaml.Marshal(g)
Expect(err).ToNot(HaveOccurred())
err = ioutil.WriteFile(filepath.Join(tmpdir, "gallery_simple.yaml"), out, 0644)
Expect(err).ToNot(HaveOccurred())
galleries := []gallery.Gallery{
{
Name: "test",
URL: "file://" + filepath.Join(tmpdir, "gallery_simple.yaml"),
},
}
app, err = App(
append(commonOpts,
options.WithContext(c),
options.WithGalleries(galleries),
options.WithModelLoader(modelLoader), options.WithBackendAssets(backendAssets), options.WithBackendAssetsOutput(tmpdir))...)
Expect(err).ToNot(HaveOccurred())
app = App(WithContext(c), WithModelLoader(modelLoader))
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@ -192,53 +138,6 @@ var _ = Describe("API test", func() {
})
Context("Applying models", func() {
It("applies models from a gallery", func() {
models := getModels("http://127.0.0.1:9090/models/available")
Expect(len(models)).To(Equal(2), fmt.Sprint(models))
Expect(models[0].Installed).To(BeFalse(), fmt.Sprint(models))
Expect(models[1].Installed).To(BeFalse(), fmt.Sprint(models))
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
ID: "test@bert2",
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
resp := map[string]interface{}{}
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
resp = response
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
Expect(resp["message"]).ToNot(ContainSubstring("error"))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert2.yaml"))
Expect(err).ToNot(HaveOccurred())
_, err = os.ReadFile(filepath.Join(tmpdir, "foo.yaml"))
Expect(err).ToNot(HaveOccurred())
content := map[string]interface{}{}
err = yaml.Unmarshal(dat, &content)
Expect(err).ToNot(HaveOccurred())
Expect(content["backend"]).To(Equal("bert-embeddings"))
Expect(content["foo"]).To(Equal("bar"))
models = getModels("http://127.0.0.1:9090/models/available")
Expect(len(models)).To(Equal(2), fmt.Sprint(models))
Expect(models[0].Name).To(Or(Equal("bert"), Equal("bert2")))
Expect(models[1].Name).To(Or(Equal("bert"), Equal("bert2")))
for _, m := range models {
if m.Name == "bert2" {
Expect(m.Installed).To(BeTrue())
} else {
Expect(m.Installed).To(BeFalse())
}
}
})
It("overrides models", func() {
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
@ -254,8 +153,9 @@ var _ = Describe("API test", func() {
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
}, "360s").Should(Equal(true))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
Expect(err).ToNot(HaveOccurred())
@ -278,8 +178,9 @@ var _ = Describe("API test", func() {
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
}, "360s").Should(Equal(true))
dat, err := os.ReadFile(filepath.Join(tmpdir, "bert.yaml"))
Expect(err).ToNot(HaveOccurred())
@ -289,215 +190,6 @@ var _ = Describe("API test", func() {
Expect(err).ToNot(HaveOccurred())
Expect(content["backend"]).To(Equal("bert-embeddings"))
})
It("runs openllama", Label("llama"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
URL: "github:go-skynet/model-gallery/openllama_3b.yaml",
Name: "openllama_3b",
Overrides: map[string]string{"backend": "llama-grammar"},
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
By("testing completion")
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "openllama_3b", Prompt: "Count up to five: one, two, three, four, "})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Text).To(ContainSubstring("five"))
By("testing functions")
resp2, err := client.CreateChatCompletion(
context.TODO(),
openai.ChatCompletionRequest{
Model: "openllama_3b",
Messages: []openai.ChatCompletionMessage{
{
Role: "user",
Content: "What is the weather like in San Francisco (celsius)?",
},
},
Functions: []openai.FunctionDefinition{
openai.FunctionDefinition{
Name: "get_current_weather",
Description: "Get the current weather",
Parameters: jsonschema.Definition{
Type: jsonschema.Object,
Properties: map[string]jsonschema.Definition{
"location": {
Type: jsonschema.String,
Description: "The city and state, e.g. San Francisco, CA",
},
"unit": {
Type: jsonschema.String,
Enum: []string{"celcius", "fahrenheit"},
},
},
Required: []string{"location"},
},
},
},
})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp2.Choices)).To(Equal(1))
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
var res map[string]string
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
Expect(err).ToNot(HaveOccurred())
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
})
It("runs gpt4all", Label("gpt4all"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
URL: "github:go-skynet/model-gallery/gpt4all-j.yaml",
Name: "gpt4all-j",
Overrides: map[string]string{},
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-j", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "How are you?"}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices)).To(Equal(1))
Expect(resp.Choices[0].Message.Content).To(ContainSubstring("well"))
})
})
})
Context("Model gallery", func() {
BeforeEach(func() {
var err error
tmpdir, err = os.MkdirTemp("", "")
Expect(err).ToNot(HaveOccurred())
modelLoader = model.NewModelLoader(tmpdir)
c, cancel = context.WithCancel(context.Background())
galleries := []gallery.Gallery{
{
Name: "model-gallery",
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/index.yaml",
},
}
app, err = App(
append(commonOpts,
options.WithContext(c),
options.WithAudioDir(tmpdir),
options.WithImageDir(tmpdir),
options.WithGalleries(galleries),
options.WithModelLoader(modelLoader),
options.WithBackendAssets(backendAssets),
options.WithBackendAssetsOutput(tmpdir))...,
)
Expect(err).ToNot(HaveOccurred())
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
client2 = openaigo.NewClient("")
client2.BaseURL = defaultConfig.BaseURL
// Wait for API to be ready
client = openai.NewClientWithConfig(defaultConfig)
Eventually(func() error {
_, err := client.ListModels(context.TODO())
return err
}, "2m").ShouldNot(HaveOccurred())
})
AfterEach(func() {
cancel()
app.Shutdown()
os.RemoveAll(tmpdir)
})
It("installs and is capable to run tts", Label("tts"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
ID: "model-gallery@voice-en-us-kathleen-low",
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
// An HTTP Post to the /tts endpoint should return a wav audio file
resp, err := http.Post("http://127.0.0.1:9090/tts", "application/json", bytes.NewBuffer([]byte(`{"input": "Hello world", "model": "en-us-kathleen-low.onnx"}`)))
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
dat, err := io.ReadAll(resp.Body)
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
Expect(resp.StatusCode).To(Equal(200), fmt.Sprint(string(dat)))
Expect(resp.Header.Get("Content-Type")).To(Equal("audio/x-wav"))
})
It("installs and is capable to generate images", Label("stablediffusion"), func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
ID: "model-gallery@stablediffusion",
})
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
uuid := response["uuid"].(string)
Eventually(func() bool {
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
fmt.Println(response)
return response["processed"].(bool)
}, "360s", "10s").Should(Equal(true))
resp, err := http.Post(
"http://127.0.0.1:9090/v1/images/generations",
"application/json",
bytes.NewBuffer([]byte(`{
"prompt": "floating hair, portrait, ((loli)), ((one girl)), cute face, hidden hands, asymmetrical bangs, beautiful detailed eyes, eye shadow, hair ornament, ribbons, bowties, buttons, pleated skirt, (((masterpiece))), ((best quality)), colorful|((part of the head)), ((((mutated hands and fingers)))), deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limb, ugly, poorly drawn hands, missing limb, blurry, floating limbs, disconnected limbs, malformed hands, blur, out of focus, long neck, long body, Octane renderer, lowres, bad anatomy, bad hands, text",
"mode": 2, "seed":9000,
"size": "256x256", "n":2}`)))
// The response should contain an URL
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
dat, err := io.ReadAll(resp.Body)
Expect(err).ToNot(HaveOccurred(), string(dat))
Expect(string(dat)).To(ContainSubstring("http://127.0.0.1:9090/"), string(dat))
Expect(string(dat)).To(ContainSubstring(".png"), string(dat))
})
})
@ -506,14 +198,7 @@ var _ = Describe("API test", func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
c, cancel = context.WithCancel(context.Background())
var err error
app, err = App(
append(commonOpts,
options.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
options.WithContext(c),
options.WithModelLoader(modelLoader),
)...)
Expect(err).ToNot(HaveOccurred())
app = App(WithContext(c), WithModelLoader(modelLoader))
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@ -536,7 +221,7 @@ var _ = Describe("API test", func() {
It("returns the models list", func() {
models, err := client.ListModels(context.TODO())
Expect(err).ToNot(HaveOccurred())
Expect(len(models.Models)).To(Equal(11))
Expect(len(models.Models)).To(Equal(10))
})
It("can generate completions", func() {
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel", Prompt: "abcdedfghikl"})
@ -567,10 +252,9 @@ var _ = Describe("API test", func() {
})
It("returns errors", func() {
backends := len(model.AutoLoadBackends) + 1 // +1 for huggingface
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: "abcdedfghikl"})
Expect(err).To(HaveOccurred())
Expect(err.Error()).To(ContainSubstring(fmt.Sprintf("error, status code: 500, message: could not load model - all backends returned error: %d errors occurred:", backends)))
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error: 12 errors occurred:"))
})
It("transcribes audio", func() {
if runtime.GOOS != "linux" {
@ -614,98 +298,15 @@ var _ = Describe("API test", func() {
Expect(resp2.Data[0].Embedding).To(Equal(sunEmbedding))
})
Context("External gRPC calls", func() {
It("calculate embeddings with huggingface", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateEmbeddings(
context.Background(),
openai.EmbeddingRequest{
Model: openai.AdaCodeSearchCode,
Input: []string{"sun", "cat"},
},
)
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Data[0].Embedding)).To(BeNumerically("==", 384))
Expect(len(resp.Data[1].Embedding)).To(BeNumerically("==", 384))
sunEmbedding := resp.Data[0].Embedding
resp2, err := client.CreateEmbeddings(
context.Background(),
openai.EmbeddingRequest{
Model: openai.AdaCodeSearchCode,
Input: []string{"sun"},
},
)
Expect(err).ToNot(HaveOccurred())
Expect(resp2.Data[0].Embedding).To(Equal(sunEmbedding))
Expect(resp2.Data[0].Embedding).ToNot(Equal(resp.Data[1].Embedding))
})
})
Context("backends", func() {
It("runs rwkv completion", func() {
It("runs rwkv", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices) > 0).To(BeTrue())
Expect(resp.Choices[0].Text).To(ContainSubstring("five"))
stream, err := client.CreateCompletionStream(context.TODO(), openai.CompletionRequest{
Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,", Stream: true,
})
Expect(err).ToNot(HaveOccurred())
defer stream.Close()
tokens := 0
text := ""
for {
response, err := stream.Recv()
if errors.Is(err, io.EOF) {
break
}
Expect(err).ToNot(HaveOccurred())
text += response.Choices[0].Text
tokens++
}
Expect(text).ToNot(BeEmpty())
Expect(text).To(ContainSubstring("five"))
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
})
It("runs rwkv chat completion", func() {
if runtime.GOOS != "linux" {
Skip("test supported only on linux")
}
resp, err := client.CreateChatCompletion(context.TODO(),
openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
Expect(err).ToNot(HaveOccurred())
Expect(len(resp.Choices) > 0).To(BeTrue())
Expect(resp.Choices[0].Message.Content).To(Or(ContainSubstring("Sure"), ContainSubstring("five")))
stream, err := client.CreateChatCompletionStream(context.TODO(), openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
Expect(err).ToNot(HaveOccurred())
defer stream.Close()
tokens := 0
text := ""
for {
response, err := stream.Recv()
if errors.Is(err, io.EOF) {
break
}
Expect(err).ToNot(HaveOccurred())
text += response.Choices[0].Delta.Content
tokens++
}
Expect(text).ToNot(BeEmpty())
Expect(text).To(Or(ContainSubstring("Sure"), ContainSubstring("five")))
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
Expect(resp.Choices[0].Text).To(Equal(" five."))
})
})
})
@ -715,14 +316,7 @@ var _ = Describe("API test", func() {
modelLoader = model.NewModelLoader(os.Getenv("MODELS_PATH"))
c, cancel = context.WithCancel(context.Background())
var err error
app, err = App(
append(commonOpts,
options.WithContext(c),
options.WithModelLoader(modelLoader),
options.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
)
Expect(err).ToNot(HaveOccurred())
app = App(WithContext(c), WithModelLoader(modelLoader), WithConfigFile(os.Getenv("CONFIG_FILE")))
go app.Listen("127.0.0.1:9090")
defaultConfig := openai.DefaultConfig("")
@ -743,7 +337,7 @@ var _ = Describe("API test", func() {
It("can generate chat completions from config file", func() {
models, err := client.ListModels(context.TODO())
Expect(err).ToNot(HaveOccurred())
Expect(len(models.Models)).To(Equal(13))
Expect(len(models.Models)).To(Equal(12))
})
It("can generate chat completions from config file", func() {
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "abcdedfghikl"}}})

@ -1,109 +0,0 @@
package backend
import (
"fmt"
"sync"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c config.Config, o *options.Option) (func() ([]float32, error), error) {
if !c.Embeddings {
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
}
modelFile := c.Model
grpcOpts := gRPCModelOpts(c)
var inferenceModel interface{}
var err error
opts := []model.Option{
model.WithLoadGRPCLLMModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.AssetsDestination),
model.WithModelFile(modelFile),
model.WithContext(o.Context),
}
for k, v := range o.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(opts...)
} else {
opts = append(opts, model.WithBackendString(c.Backend))
inferenceModel, err = loader.BackendLoader(opts...)
}
if err != nil {
return nil, err
}
var fn func() ([]float32, error)
switch model := inferenceModel.(type) {
case *grpc.Client:
fn = func() ([]float32, error) {
predictOptions := gRPCPredictOpts(c, loader.ModelPath)
if len(tokens) > 0 {
embeds := []int32{}
for _, t := range tokens {
embeds = append(embeds, int32(t))
}
predictOptions.EmbeddingTokens = embeds
res, err := model.Embeddings(o.Context, predictOptions)
if err != nil {
return nil, err
}
return res.Embeddings, nil
}
predictOptions.Embeddings = s
res, err := model.Embeddings(o.Context, predictOptions)
if err != nil {
return nil, err
}
return res.Embeddings, nil
}
default:
fn = func() ([]float32, error) {
return nil, fmt.Errorf("embeddings not supported by the backend")
}
}
return func() ([]float32, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
embeds, err := fn()
if err != nil {
return embeds, err
}
// Remove trailing 0s
for i := len(embeds) - 1; i >= 0; i-- {
if embeds[i] == 0.0 {
embeds = embeds[:i]
} else {
break
}
}
return embeds, nil
}, nil
}

@ -1,68 +0,0 @@
package backend
import (
"fmt"
"sync"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c config.Config, o *options.Option) (func() error, error) {
if c.Backend != model.StableDiffusionBackend {
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
}
opts := []model.Option{
model.WithBackendString(c.Backend),
model.WithAssetDir(o.AssetsDestination),
model.WithThreads(uint32(c.Threads)),
model.WithContext(o.Context),
model.WithModelFile(c.ImageGenerationAssets),
}
for k, v := range o.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
inferenceModel, err := loader.BackendLoader(
opts...,
)
if err != nil {
return nil, err
}
fn := func() error {
_, err := inferenceModel.GenerateImage(
o.Context,
&proto.GenerateImageRequest{
Height: int32(height),
Width: int32(width),
Mode: int32(mode),
Step: int32(step),
Seed: int32(seed),
PositivePrompt: positive_prompt,
NegativePrompt: negative_prompt,
Dst: dst,
})
return err
}
return func() error {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[c.Backend]
if !ok {
m := &sync.Mutex{}
mutexes[c.Backend] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
return fn()
}, nil
}

@ -1,124 +0,0 @@
package backend
import (
"os"
"regexp"
"strings"
"sync"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/grpc"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
func ModelInference(s string, loader *model.ModelLoader, c config.Config, o *options.Option, tokenCallback func(string) bool) (func() (string, error), error) {
modelFile := c.Model
grpcOpts := gRPCModelOpts(c)
var inferenceModel *grpc.Client
var err error
opts := []model.Option{
model.WithLoadGRPCLLMModelOpts(grpcOpts),
model.WithThreads(uint32(c.Threads)), // some models uses this to allocate threads during startup
model.WithAssetDir(o.AssetsDestination),
model.WithModelFile(modelFile),
model.WithContext(o.Context),
}
for k, v := range o.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
if c.Backend != "" {
opts = append(opts, model.WithBackendString(c.Backend))
}
// Check if the modelFile exists, if it doesn't try to load it from the gallery
if o.AutoloadGalleries { // experimental
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
utils.ResetDownloadTimers()
// if we failed to load the model, we try to download it
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
if err != nil {
return nil, err
}
}
}
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(opts...)
} else {
inferenceModel, err = loader.BackendLoader(opts...)
}
if err != nil {
return nil, err
}
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
fn := func() (string, error) {
opts := gRPCPredictOpts(c, loader.ModelPath)
opts.Prompt = s
if tokenCallback != nil {
ss := ""
err := inferenceModel.PredictStream(o.Context, opts, func(s string) {
tokenCallback(s)
ss += s
})
return ss, err
} else {
reply, err := inferenceModel.Predict(o.Context, opts)
if err != nil {
return "", err
}
return reply.Message, err
}
}
return func() (string, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
return fn()
}, nil
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
func Finetune(config config.Config, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
return prediction
}

@ -1,22 +0,0 @@
package backend
import "sync"
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
var mutexMap sync.Mutex
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
func Lock(s string) *sync.Mutex {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[s]
if !ok {
m := &sync.Mutex{}
mutexes[s] = m
l = m
}
mutexMap.Unlock()
l.Lock()
return l
}

@ -1,72 +0,0 @@
package backend
import (
"os"
"path/filepath"
pb "github.com/go-skynet/LocalAI/pkg/grpc/proto"
config "github.com/go-skynet/LocalAI/api/config"
)
func gRPCModelOpts(c config.Config) *pb.ModelOptions {
b := 512
if c.Batch != 0 {
b = c.Batch
}
return &pb.ModelOptions{
ContextSize: int32(c.ContextSize),
Seed: int32(c.Seed),
NBatch: int32(b),
F16Memory: c.F16,
MLock: c.MMlock,
NUMA: c.NUMA,
Embeddings: c.Embeddings,
LowVRAM: c.LowVRAM,
NGPULayers: int32(c.NGPULayers),
MMap: c.MMap,
MainGPU: c.MainGPU,
Threads: int32(c.Threads),
TensorSplit: c.TensorSplit,
}
}
func gRPCPredictOpts(c config.Config, modelPath string) *pb.PredictOptions {
promptCachePath := ""
if c.PromptCachePath != "" {
p := filepath.Join(modelPath, c.PromptCachePath)
os.MkdirAll(filepath.Dir(p), 0755)
promptCachePath = p
}
return &pb.PredictOptions{
Temperature: float32(c.Temperature),
TopP: float32(c.TopP),
TopK: int32(c.TopK),
Tokens: int32(c.Maxtokens),
Threads: int32(c.Threads),
PromptCacheAll: c.PromptCacheAll,
PromptCacheRO: c.PromptCacheRO,
PromptCachePath: promptCachePath,
F16KV: c.F16,
DebugMode: c.Debug,
Grammar: c.Grammar,
Mirostat: int32(c.Mirostat),
MirostatETA: float32(c.MirostatETA),
MirostatTAU: float32(c.MirostatTAU),
Debug: c.Debug,
StopPrompts: c.StopWords,
Repeat: int32(c.RepeatPenalty),
NKeep: int32(c.Keep),
Batch: int32(c.Batch),
IgnoreEOS: c.IgnoreEOS,
Seed: int32(c.Seed),
FrequencyPenalty: float32(c.FrequencyPenalty),
MLock: c.MMlock,
MMap: c.MMap,
MainGPU: c.MainGPU,
TensorSplit: c.TensorSplit,
TailFreeSamplingZ: float32(c.TFZ),
TypicalP: float32(c.TypicalP),
}
}

@ -1,42 +0,0 @@
package backend
import (
"context"
"fmt"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
"github.com/go-skynet/LocalAI/pkg/grpc/whisper/api"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ModelTranscription(audio, language string, loader *model.ModelLoader, c config.Config, o *options.Option) (*api.Result, error) {
opts := []model.Option{
model.WithBackendString(model.WhisperBackend),
model.WithModelFile(c.Model),
model.WithContext(o.Context),
model.WithThreads(uint32(c.Threads)),
model.WithAssetDir(o.AssetsDestination),
}
for k, v := range o.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
whisperModel, err := o.Loader.BackendLoader(opts...)
if err != nil {
return nil, err
}
if whisperModel == nil {
return nil, fmt.Errorf("could not load whisper model")
}
return whisperModel.AudioTranscription(context.Background(), &proto.TranscriptRequest{
Dst: audio,
Language: language,
Threads: uint32(c.Threads),
})
}

@ -1,72 +0,0 @@
package backend
import (
"context"
"fmt"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grpc/proto"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/utils"
)
func generateUniqueFileName(dir, baseName, ext string) string {
counter := 1
fileName := baseName + ext
for {
filePath := filepath.Join(dir, fileName)
_, err := os.Stat(filePath)
if os.IsNotExist(err) {
return fileName
}
counter++
fileName = fmt.Sprintf("%s_%d%s", baseName, counter, ext)
}
}
func ModelTTS(text, modelFile string, loader *model.ModelLoader, o *options.Option) (string, *proto.Result, error) {
opts := []model.Option{
model.WithBackendString(model.PiperBackend),
model.WithModelFile(modelFile),
model.WithContext(o.Context),
model.WithAssetDir(o.AssetsDestination),
}
for k, v := range o.ExternalGRPCBackends {
opts = append(opts, model.WithExternalBackend(k, v))
}
piperModel, err := o.Loader.BackendLoader(opts...)
if err != nil {
return "", nil, err
}
if piperModel == nil {
return "", nil, fmt.Errorf("could not load piper model")
}
if err := os.MkdirAll(o.AudioDir, 0755); err != nil {
return "", nil, fmt.Errorf("failed creating audio directory: %s", err)
}
fileName := generateUniqueFileName(o.AudioDir, "piper", ".wav")
filePath := filepath.Join(o.AudioDir, fileName)
modelPath := filepath.Join(o.Loader.ModelPath, modelFile)
if err := utils.VerifyPath(modelPath, o.Loader.ModelPath); err != nil {
return "", nil, err
}
res, err := piperModel.TTS(context.Background(), &proto.TTSRequest{
Text: text,
Model: modelPath,
Dst: filePath,
})
return filePath, res, err
}

@ -0,0 +1,329 @@
package api
import (
"encoding/json"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"strings"
"sync"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"gopkg.in/yaml.v3"
)
type Config struct {
OpenAIRequest `yaml:"parameters"`
Name string `yaml:"name"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
F16 bool `yaml:"f16"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
ImageGenerationAssets string `yaml:"asset_dir"`
PromptStrings, InputStrings []string
InputToken [][]int
}
type TemplateConfig struct {
Completion string `yaml:"completion"`
Chat string `yaml:"chat"`
Edit string `yaml:"edit"`
}
type ConfigMerger struct {
configs map[string]Config
sync.Mutex
}
func NewConfigMerger() *ConfigMerger {
return &ConfigMerger{
configs: make(map[string]Config),
}
}
func ReadConfigFile(file string) ([]*Config, error) {
c := &[]*Config{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
return *c, nil
}
func ReadConfig(file string) (*Config, error) {
c := &Config{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
return c, nil
}
func (cm ConfigMerger) LoadConfigFile(file string) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadConfigFile(file)
if err != nil {
return fmt.Errorf("cannot load config file: %w", err)
}
for _, cc := range c {
cm.configs[cc.Name] = *cc
}
return nil
}
func (cm ConfigMerger) LoadConfig(file string) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadConfig(file)
if err != nil {
return fmt.Errorf("cannot read config file: %w", err)
}
cm.configs[c.Name] = *c
return nil
}
func (cm ConfigMerger) GetConfig(m string) (Config, bool) {
cm.Lock()
defer cm.Unlock()
v, exists := cm.configs[m]
return v, exists
}
func (cm ConfigMerger) ListConfigs() []string {
cm.Lock()
defer cm.Unlock()
var res []string
for k := range cm.configs {
res = append(res, k)
}
return res
}
func (cm ConfigMerger) LoadConfigs(path string) error {
cm.Lock()
defer cm.Unlock()
files, err := ioutil.ReadDir(path)
if err != nil {
return err
}
for _, file := range files {
// Skip templates, YAML and .keep files
if !strings.Contains(file.Name(), ".yaml") {
continue
}
c, err := ReadConfig(filepath.Join(path, file.Name()))
if err == nil {
cm.configs[c.Name] = *c
}
}
return nil
}
func updateConfig(config *Config, input *OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
if input.TopK != 0 {
config.TopK = input.TopK
}
if input.TopP != 0 {
config.TopP = input.TopP
}
if input.Temperature != 0 {
config.Temperature = input.Temperature
}
if input.Maxtokens != 0 {
config.Maxtokens = input.Maxtokens
}
switch stop := input.Stop.(type) {
case string:
if stop != "" {
config.StopWords = append(config.StopWords, stop)
}
case []interface{}:
for _, pp := range stop {
if s, ok := pp.(string); ok {
config.StopWords = append(config.StopWords, s)
}
}
}
if input.RepeatPenalty != 0 {
config.RepeatPenalty = input.RepeatPenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
if input.Batch != 0 {
config.Batch = input.Batch
}
if input.F16 {
config.F16 = input.F16
}
if input.IgnoreEOS {
config.IgnoreEOS = input.IgnoreEOS
}
if input.Seed != 0 {
config.Seed = input.Seed
}
if input.Mirostat != 0 {
config.Mirostat = input.Mirostat
}
if input.MirostatETA != 0 {
config.MirostatETA = input.MirostatETA
}
if input.MirostatTAU != 0 {
config.MirostatTAU = input.MirostatTAU
}
switch inputs := input.Input.(type) {
case string:
if inputs != "" {
config.InputStrings = append(config.InputStrings, inputs)
}
case []interface{}:
for _, pp := range inputs {
switch i := pp.(type) {
case string:
config.InputStrings = append(config.InputStrings, i)
case []interface{}:
tokens := []int{}
for _, ii := range i {
tokens = append(tokens, int(ii.(float64)))
}
config.InputToken = append(config.InputToken, tokens)
}
}
}
switch p := input.Prompt.(type) {
case string:
config.PromptStrings = append(config.PromptStrings, p)
case []interface{}:
for _, pp := range p {
if s, ok := pp.(string); ok {
config.PromptStrings = append(config.PromptStrings, s)
}
}
}
}
func readInput(c *fiber.Ctx, loader *model.ModelLoader, randomModel bool) (string, *OpenAIRequest, error) {
input := new(OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", nil, err
}
modelFile := input.Model
if c.Params("model") != "" {
modelFile = c.Params("model")
}
received, _ := json.Marshal(input)
log.Debug().Msgf("Request received: %s", string(received))
// Set model from bearer token, if available
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
// If no model was specified, take the first available
if modelFile == "" && !bearerExists && randomModel {
models, _ := loader.ListModels()
if len(models) > 0 {
modelFile = models[0]
log.Debug().Msgf("No model specified, using: %s", modelFile)
} else {
log.Debug().Msgf("No model specified, returning error")
return "", nil, fmt.Errorf("no model specified")
}
}
// If a model is found in bearer token takes precedence
if bearerExists {
log.Debug().Msgf("Using model from bearer token: %s", bearer)
modelFile = bearer
}
return modelFile, input, nil
}
func readConfig(modelFile string, input *OpenAIRequest, cm *ConfigMerger, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*Config, *OpenAIRequest, error) {
// Load a config file if present after the model name
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
if _, err := os.Stat(modelConfig); err == nil {
if err := cm.LoadConfig(modelConfig); err != nil {
return nil, nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
}
var config *Config
cfg, exists := cm.GetConfig(modelFile)
if !exists {
config = &Config{
OpenAIRequest: defaultRequest(modelFile),
ContextSize: ctx,
Threads: threads,
F16: f16,
Debug: debug,
}
} else {
config = &cfg
}
// Set the parameters for the language model prediction
updateConfig(config, input)
// Don't allow 0 as setting
if config.Threads == 0 {
if threads != 0 {
config.Threads = threads
} else {
config.Threads = 4
}
}
// Enforce debug flag if passed from CLI
if debug {
config.Debug = true
}
return config, input, nil
}

@ -1,209 +0,0 @@
package api_config
import (
"fmt"
"io/fs"
"os"
"path/filepath"
"strings"
"sync"
"gopkg.in/yaml.v3"
)
type Config struct {
PredictionOptions `yaml:"parameters"`
Name string `yaml:"name"`
StopWords []string `yaml:"stopwords"`
Cutstrings []string `yaml:"cutstrings"`
TrimSpace []string `yaml:"trimspace"`
ContextSize int `yaml:"context_size"`
F16 bool `yaml:"f16"`
NUMA bool `yaml:"numa"`
Threads int `yaml:"threads"`
Debug bool `yaml:"debug"`
Roles map[string]string `yaml:"roles"`
Embeddings bool `yaml:"embeddings"`
Backend string `yaml:"backend"`
TemplateConfig TemplateConfig `yaml:"template"`
MirostatETA float64 `yaml:"mirostat_eta"`
MirostatTAU float64 `yaml:"mirostat_tau"`
Mirostat int `yaml:"mirostat"`
NGPULayers int `yaml:"gpu_layers"`
MMap bool `yaml:"mmap"`
MMlock bool `yaml:"mmlock"`
LowVRAM bool `yaml:"low_vram"`
TensorSplit string `yaml:"tensor_split"`
MainGPU string `yaml:"main_gpu"`
ImageGenerationAssets string `yaml:"asset_dir"`
PromptCachePath string `yaml:"prompt_cache_path"`
PromptCacheAll bool `yaml:"prompt_cache_all"`
PromptCacheRO bool `yaml:"prompt_cache_ro"`
Grammar string `yaml:"grammar"`
PromptStrings, InputStrings []string
InputToken [][]int
functionCallString, functionCallNameString string
FunctionsConfig Functions `yaml:"function"`
}
type Functions struct {
DisableNoAction bool `yaml:"disable_no_action"`
NoActionFunctionName string `yaml:"no_action_function_name"`
NoActionDescriptionName string `yaml:"no_action_description_name"`
}
type TemplateConfig struct {
Completion string `yaml:"completion"`
Functions string `yaml:"function"`
Chat string `yaml:"chat"`
Edit string `yaml:"edit"`
}
type ConfigLoader struct {
configs map[string]Config
sync.Mutex
}
func (c *Config) SetFunctionCallString(s string) {
c.functionCallString = s
}
func (c *Config) SetFunctionCallNameString(s string) {
c.functionCallNameString = s
}
func (c *Config) ShouldUseFunctions() bool {
return ((c.functionCallString != "none" || c.functionCallString == "") || c.ShouldCallSpecificFunction())
}
func (c *Config) ShouldCallSpecificFunction() bool {
return len(c.functionCallNameString) > 0
}
func (c *Config) FunctionToCall() string {
return c.functionCallNameString
}
func defaultPredictOptions(modelFile string) PredictionOptions {
return PredictionOptions{
TopP: 0.7,
TopK: 80,
Maxtokens: 512,
Temperature: 0.9,
Model: modelFile,
}
}
func DefaultConfig(modelFile string) *Config {
return &Config{
PredictionOptions: defaultPredictOptions(modelFile),
}
}
func NewConfigLoader() *ConfigLoader {
return &ConfigLoader{
configs: make(map[string]Config),
}
}
func ReadConfigFile(file string) ([]*Config, error) {
c := &[]*Config{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
return *c, nil
}
func ReadConfig(file string) (*Config, error) {
c := &Config{}
f, err := os.ReadFile(file)
if err != nil {
return nil, fmt.Errorf("cannot read config file: %w", err)
}
if err := yaml.Unmarshal(f, c); err != nil {
return nil, fmt.Errorf("cannot unmarshal config file: %w", err)
}
return c, nil
}
func (cm *ConfigLoader) LoadConfigFile(file string) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadConfigFile(file)
if err != nil {
return fmt.Errorf("cannot load config file: %w", err)
}
for _, cc := range c {
cm.configs[cc.Name] = *cc
}
return nil
}
func (cm *ConfigLoader) LoadConfig(file string) error {
cm.Lock()
defer cm.Unlock()
c, err := ReadConfig(file)
if err != nil {
return fmt.Errorf("cannot read config file: %w", err)
}
cm.configs[c.Name] = *c
return nil
}
func (cm *ConfigLoader) GetConfig(m string) (Config, bool) {
cm.Lock()
defer cm.Unlock()
v, exists := cm.configs[m]
return v, exists
}
func (cm *ConfigLoader) ListConfigs() []string {
cm.Lock()
defer cm.Unlock()
var res []string
for k := range cm.configs {
res = append(res, k)
}
return res
}
func (cm *ConfigLoader) LoadConfigs(path string) error {
cm.Lock()
defer cm.Unlock()
entries, err := os.ReadDir(path)
if err != nil {
return err
}
files := make([]fs.FileInfo, 0, len(entries))
for _, entry := range entries {
info, err := entry.Info()
if err != nil {
return err
}
files = append(files, info)
}
for _, file := range files {
// Skip templates, YAML and .keep files
if !strings.Contains(file.Name(), ".yaml") {
continue
}
c, err := ReadConfig(filepath.Join(path, file.Name()))
if err == nil {
cm.configs[c.Name] = *c
}
}
return nil
}

@ -1,56 +0,0 @@
package api_config_test
import (
"os"
. "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/model"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("Test cases for config related functions", func() {
var (
configFile string
)
Context("Test Read configuration functions", func() {
configFile = os.Getenv("CONFIG_FILE")
It("Test ReadConfigFile", func() {
config, err := ReadConfigFile(configFile)
Expect(err).To(BeNil())
Expect(config).ToNot(BeNil())
// two configs in config.yaml
Expect(config[0].Name).To(Equal("list1"))
Expect(config[1].Name).To(Equal("list2"))
})
It("Test LoadConfigs", func() {
cm := NewConfigLoader()
opts := options.NewOptions()
modelLoader := model.NewModelLoader(os.Getenv("MODELS_PATH"))
options.WithModelLoader(modelLoader)(opts)
err := cm.LoadConfigs(opts.Loader.ModelPath)
Expect(err).To(BeNil())
Expect(cm.ListConfigs()).ToNot(BeNil())
// config should includes gpt4all models's api.config
Expect(cm.ListConfigs()).To(ContainElements("gpt4all"))
// config should includes gpt2 models's api.config
Expect(cm.ListConfigs()).To(ContainElements("gpt4all-2"))
// config should includes text-embedding-ada-002 models's api.config
Expect(cm.ListConfigs()).To(ContainElements("text-embedding-ada-002"))
// config should includes rwkv_test models's api.config
Expect(cm.ListConfigs()).To(ContainElements("rwkv_test"))
// config should includes whisper-1 models's api.config
Expect(cm.ListConfigs()).To(ContainElements("whisper-1"))
})
})
})

@ -1,37 +0,0 @@
package api_config
type PredictionOptions struct {
// Also part of the OpenAI official spec
Model string `json:"model" yaml:"model"`
// Also part of the OpenAI official spec
Language string `json:"language"`
// Also part of the OpenAI official spec. use it for returning multiple results
N int `json:"n"`
// Common options between all the API calls, part of the OpenAI spec
TopP float64 `json:"top_p" yaml:"top_p"`
TopK int `json:"top_k" yaml:"top_k"`
Temperature float64 `json:"temperature" yaml:"temperature"`
Maxtokens int `json:"max_tokens" yaml:"max_tokens"`
Echo bool `json:"echo"`
// Custom parameters - not present in the OpenAI API
Batch int `json:"batch" yaml:"batch"`
F16 bool `json:"f16" yaml:"f16"`
IgnoreEOS bool `json:"ignore_eos" yaml:"ignore_eos"`
RepeatPenalty float64 `json:"repeat_penalty" yaml:"repeat_penalty"`
Keep int `json:"n_keep" yaml:"n_keep"`
MirostatETA float64 `json:"mirostat_eta" yaml:"mirostat_eta"`
MirostatTAU float64 `json:"mirostat_tau" yaml:"mirostat_tau"`
Mirostat int `json:"mirostat" yaml:"mirostat"`
FrequencyPenalty float64 `json:"frequency_penalty" yaml:"frequency_penalty"`
TFZ float64 `json:"tfz" yaml:"tfz"`
TypicalP float64 `json:"typical_p" yaml:"typical_p"`
Seed int `json:"seed" yaml:"seed"`
}

@ -0,0 +1,196 @@
package api
import (
"context"
"fmt"
"io/ioutil"
"net/http"
"net/url"
"strings"
"sync"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"gopkg.in/yaml.v3"
)
type galleryOp struct {
req ApplyGalleryModelRequest
id string
}
type galleryOpStatus struct {
Error error `json:"error"`
Processed bool `json:"processed"`
Message string `json:"message"`
}
type galleryApplier struct {
modelPath string
sync.Mutex
C chan galleryOp
statuses map[string]*galleryOpStatus
}
func newGalleryApplier(modelPath string) *galleryApplier {
return &galleryApplier{
modelPath: modelPath,
C: make(chan galleryOp),
statuses: make(map[string]*galleryOpStatus),
}
}
func (g *galleryApplier) updatestatus(s string, op *galleryOpStatus) {
g.Lock()
defer g.Unlock()
g.statuses[s] = op
}
func (g *galleryApplier) getstatus(s string) *galleryOpStatus {
g.Lock()
defer g.Unlock()
return g.statuses[s]
}
func (g *galleryApplier) start(c context.Context, cm *ConfigMerger) {
go func() {
for {
select {
case <-c.Done():
return
case op := <-g.C:
g.updatestatus(op.id, &galleryOpStatus{Message: "processing"})
updateError := func(e error) {
g.updatestatus(op.id, &galleryOpStatus{Error: e, Processed: true})
}
url, err := op.req.DecodeURL()
if err != nil {
updateError(err)
continue
}
// Send a GET request to the URL
response, err := http.Get(url)
if err != nil {
updateError(err)
continue
}
defer response.Body.Close()
// Read the response body
body, err := ioutil.ReadAll(response.Body)
if err != nil {
updateError(err)
continue
}
// Unmarshal YAML data into a Config struct
var config gallery.Config
err = yaml.Unmarshal(body, &config)
if err != nil {
updateError(fmt.Errorf("failed to unmarshal YAML: %v", err))
continue
}
config.Files = append(config.Files, op.req.AdditionalFiles...)
if err := gallery.Apply(g.modelPath, op.req.Name, &config, op.req.Overrides); err != nil {
updateError(err)
continue
}
// Reload models
if err := cm.LoadConfigs(g.modelPath); err != nil {
updateError(err)
continue
}
g.updatestatus(op.id, &galleryOpStatus{Processed: true, Message: "completed"})
}
}
}()
}
// endpoints
type ApplyGalleryModelRequest struct {
URL string `json:"url"`
Name string `json:"name"`
Overrides map[string]interface{} `json:"overrides"`
AdditionalFiles []gallery.File `json:"files"`
}
const (
githubURI = "github:"
)
func (request ApplyGalleryModelRequest) DecodeURL() (string, error) {
input := request.URL
var rawURL string
if strings.HasPrefix(input, githubURI) {
parts := strings.Split(input, ":")
repoParts := strings.Split(parts[1], "@")
branch := "main"
if len(repoParts) > 1 {
branch = repoParts[1]
}
repoPath := strings.Split(repoParts[0], "/")
org := repoPath[0]
project := repoPath[1]
projectPath := strings.Join(repoPath[2:], "/")
rawURL = fmt.Sprintf("https://raw.githubusercontent.com/%s/%s/%s/%s", org, project, branch, projectPath)
} else if strings.HasPrefix(input, "http://") || strings.HasPrefix(input, "https://") {
// Handle regular URLs
u, err := url.Parse(input)
if err != nil {
return "", fmt.Errorf("invalid URL: %w", err)
}
rawURL = u.String()
} else {
return "", fmt.Errorf("invalid URL format")
}
return rawURL, nil
}
func getOpStatus(g *galleryApplier) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
status := g.getstatus(c.Params("uuid"))
if status == nil {
return fmt.Errorf("could not find any status for ID")
}
return c.JSON(status)
}
}
func applyModelGallery(modelPath string, cm *ConfigMerger, g chan galleryOp) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(ApplyGalleryModelRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
uuid, err := uuid.NewUUID()
if err != nil {
return err
}
g <- galleryOp{
req: *input,
id: uuid.String(),
}
return c.JSON(struct {
ID string `json:"uuid"`
StatusURL string `json:"status"`
}{ID: uuid.String(), StatusURL: c.BaseURL() + "/models/jobs/" + uuid.String()})
}
}

@ -0,0 +1,30 @@
package api_test
import (
. "github.com/go-skynet/LocalAI/api"
. "github.com/onsi/ginkgo/v2"
. "github.com/onsi/gomega"
)
var _ = Describe("Gallery API tests", func() {
Context("requests", func() {
It("parses github with a branch", func() {
req := ApplyGalleryModelRequest{URL: "github:go-skynet/model-gallery/gpt4all-j.yaml@main"}
str, err := req.DecodeURL()
Expect(err).ToNot(HaveOccurred())
Expect(str).To(Equal("https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"))
})
It("parses github without a branch", func() {
req := ApplyGalleryModelRequest{URL: "github:go-skynet/model-gallery/gpt4all-j.yaml"}
str, err := req.DecodeURL()
Expect(err).ToNot(HaveOccurred())
Expect(str).To(Equal("https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"))
})
It("parses URLS", func() {
req := ApplyGalleryModelRequest{URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"}
str, err := req.DecodeURL()
Expect(err).ToNot(HaveOccurred())
Expect(str).To(Equal("https://raw.githubusercontent.com/go-skynet/model-gallery/main/gpt4all-j.yaml"))
})
})
})

@ -1,224 +0,0 @@
package localai
import (
"context"
"fmt"
"os"
"strings"
"sync"
json "github.com/json-iterator/go"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/pkg/gallery"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/gofiber/fiber/v2"
"github.com/google/uuid"
"github.com/rs/zerolog/log"
)
type galleryOp struct {
req gallery.GalleryModel
id string
galleries []gallery.Gallery
galleryName string
}
type galleryOpStatus struct {
Error error `json:"error"`
Processed bool `json:"processed"`
Message string `json:"message"`
Progress float64 `json:"progress"`
TotalFileSize string `json:"file_size"`
DownloadedFileSize string `json:"downloaded_size"`
}
type galleryApplier struct {
modelPath string
sync.Mutex
C chan galleryOp
statuses map[string]*galleryOpStatus
}
func NewGalleryService(modelPath string) *galleryApplier {
return &galleryApplier{
modelPath: modelPath,
C: make(chan galleryOp),
statuses: make(map[string]*galleryOpStatus),
}
}
// prepareModel applies a
func prepareModel(modelPath string, req gallery.GalleryModel, cm *config.ConfigLoader, downloadStatus func(string, string, string, float64)) error {
config, err := gallery.GetGalleryConfigFromURL(req.URL)
if err != nil {
return err
}
config.Files = append(config.Files, req.AdditionalFiles...)
return gallery.InstallModel(modelPath, req.Name, &config, req.Overrides, downloadStatus)
}
func (g *galleryApplier) updateStatus(s string, op *galleryOpStatus) {
g.Lock()
defer g.Unlock()
g.statuses[s] = op
}
func (g *galleryApplier) getStatus(s string) *galleryOpStatus {
g.Lock()
defer g.Unlock()
return g.statuses[s]
}
func (g *galleryApplier) Start(c context.Context, cm *config.ConfigLoader) {
go func() {
for {
select {
case <-c.Done():
return
case op := <-g.C:
utils.ResetDownloadTimers()
g.updateStatus(op.id, &galleryOpStatus{Message: "processing", Progress: 0})
// updates the status with an error
updateError := func(e error) {
g.updateStatus(op.id, &galleryOpStatus{Error: e, Processed: true, Message: "error: " + e.Error()})
}
// displayDownload displays the download progress
progressCallback := func(fileName string, current string, total string, percentage float64) {
g.updateStatus(op.id, &galleryOpStatus{Message: "processing", Progress: percentage, TotalFileSize: total, DownloadedFileSize: current})
utils.DisplayDownloadFunction(fileName, current, total, percentage)
}
var err error
// if the request contains a gallery name, we apply the gallery from the gallery list
if op.galleryName != "" {
if strings.Contains(op.galleryName, "@") {
err = gallery.InstallModelFromGallery(op.galleries, op.galleryName, g.modelPath, op.req, progressCallback)
} else {
err = gallery.InstallModelFromGalleryByName(op.galleries, op.galleryName, g.modelPath, op.req, progressCallback)
}
} else {
err = prepareModel(g.modelPath, op.req, cm, progressCallback)
}
if err != nil {
updateError(err)
continue
}
// Reload models
err = cm.LoadConfigs(g.modelPath)
if err != nil {
updateError(err)
continue
}
g.updateStatus(op.id, &galleryOpStatus{Processed: true, Message: "completed", Progress: 100})
}
}
}()
}
type galleryModel struct {
gallery.GalleryModel
ID string `json:"id"`
}
func ApplyGalleryFromFile(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery) error {
dat, err := os.ReadFile(s)
if err != nil {
return err
}
return ApplyGalleryFromString(modelPath, string(dat), cm, galleries)
}
func ApplyGalleryFromString(modelPath, s string, cm *config.ConfigLoader, galleries []gallery.Gallery) error {
var requests []galleryModel
err := json.Unmarshal([]byte(s), &requests)
if err != nil {
return err
}
for _, r := range requests {
utils.ResetDownloadTimers()
if r.ID == "" {
err = prepareModel(modelPath, r.GalleryModel, cm, utils.DisplayDownloadFunction)
} else {
err = gallery.InstallModelFromGallery(galleries, r.ID, modelPath, r.GalleryModel, utils.DisplayDownloadFunction)
}
}
return err
}
/// Endpoints
func GetOpStatusEndpoint(g *galleryApplier) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
status := g.getStatus(c.Params("uuid"))
if status == nil {
return fmt.Errorf("could not find any status for ID")
}
return c.JSON(status)
}
}
type GalleryModel struct {
ID string `json:"id"`
gallery.GalleryModel
}
func ApplyModelGalleryEndpoint(modelPath string, cm *config.ConfigLoader, g chan galleryOp, galleries []gallery.Gallery) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(GalleryModel)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
uuid, err := uuid.NewUUID()
if err != nil {
return err
}
g <- galleryOp{
req: input.GalleryModel,
id: uuid.String(),
galleryName: input.ID,
galleries: galleries,
}
return c.JSON(struct {
ID string `json:"uuid"`
StatusURL string `json:"status"`
}{ID: uuid.String(), StatusURL: c.BaseURL() + "/models/jobs/" + uuid.String()})
}
}
func ListModelFromGalleryEndpoint(galleries []gallery.Gallery, basePath string) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
log.Debug().Msgf("Listing models from galleries: %+v", galleries)
models, err := gallery.AvailableGalleryModels(galleries, basePath)
if err != nil {
return err
}
log.Debug().Msgf("Models found from galleries: %+v", models)
for _, m := range models {
log.Debug().Msgf("Model found from galleries: %+v", m)
}
dat, err := json.Marshal(models)
if err != nil {
return err
}
return c.Send(dat)
}
}

@ -1,31 +0,0 @@
package localai
import (
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/gofiber/fiber/v2"
)
type TTSRequest struct {
Model string `json:"model" yaml:"model"`
Input string `json:"input" yaml:"input"`
}
func TTSEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
input := new(TTSRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return err
}
filePath, _, err := backend.ModelTTS(input.Input, input.Model, o.Loader, o)
if err != nil {
return err
}
return c.Download(filePath)
}
}

@ -0,0 +1,678 @@
package api
import (
"bufio"
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"io/ioutil"
"net/http"
"os"
"path"
"path/filepath"
"strconv"
"strings"
"github.com/ggerganov/whisper.cpp/bindings/go/pkg/whisper"
model "github.com/go-skynet/LocalAI/pkg/model"
whisperutil "github.com/go-skynet/LocalAI/pkg/whisper"
llama "github.com/go-skynet/go-llama.cpp"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
// APIError provides error information returned by the OpenAI API.
type APIError struct {
Code any `json:"code,omitempty"`
Message string `json:"message"`
Param *string `json:"param,omitempty"`
Type string `json:"type"`
}
type ErrorResponse struct {
Error *APIError `json:"error,omitempty"`
}
type OpenAIUsage struct {
PromptTokens int `json:"prompt_tokens"`
CompletionTokens int `json:"completion_tokens"`
TotalTokens int `json:"total_tokens"`
}
type Item struct {
Embedding []float32 `json:"embedding"`
Index int `json:"index"`
Object string `json:"object,omitempty"`
// Images
URL string `json:"url,omitempty"`
B64JSON string `json:"b64_json,omitempty"`
}
type OpenAIResponse struct {
Created int `json:"created,omitempty"`
Object string `json:"object,omitempty"`
ID string `json:"id,omitempty"`
Model string `json:"model,omitempty"`
Choices []Choice `json:"choices,omitempty"`
Data []Item `json:"data,omitempty"`
Usage OpenAIUsage `json:"usage"`
}
type Choice struct {
Index int `json:"index,omitempty"`
FinishReason string `json:"finish_reason,omitempty"`
Message *Message `json:"message,omitempty"`
Delta *Message `json:"delta,omitempty"`
Text string `json:"text,omitempty"`
}
type Message struct {
Role string `json:"role,omitempty" yaml:"role"`
Content string `json:"content,omitempty" yaml:"content"`
}
type OpenAIModel struct {
ID string `json:"id"`
Object string `json:"object"`
}
type OpenAIRequest struct {
Model string `json:"model" yaml:"model"`
// whisper
File string `json:"file" validate:"required"`
Language string `json:"language"`
//whisper/image
ResponseFormat string `json:"response_format"`
// image
Size string `json:"size"`
// Prompt is read only by completion/image API calls
Prompt interface{} `json:"prompt" yaml:"prompt"`
// Edit endpoint
Instruction string `json:"instruction" yaml:"instruction"`
Input interface{} `json:"input" yaml:"input"`
Stop interface{} `json:"stop" yaml:"stop"`
// Messages is read only by chat/completion API calls
Messages []Message `json:"messages" yaml:"messages"`
Stream bool `json:"stream"`
Echo bool `json:"echo"`
// Common options between all the API calls
TopP float64 `json:"top_p" yaml:"top_p"`
TopK int `json:"top_k" yaml:"top_k"`
Temperature float64 `json:"temperature" yaml:"temperature"`
Maxtokens int `json:"max_tokens" yaml:"max_tokens"`
N int `json:"n"`
// Custom parameters - not present in the OpenAI API
Batch int `json:"batch" yaml:"batch"`
F16 bool `json:"f16" yaml:"f16"`
IgnoreEOS bool `json:"ignore_eos" yaml:"ignore_eos"`
RepeatPenalty float64 `json:"repeat_penalty" yaml:"repeat_penalty"`
Keep int `json:"n_keep" yaml:"n_keep"`
MirostatETA float64 `json:"mirostat_eta" yaml:"mirostat_eta"`
MirostatTAU float64 `json:"mirostat_tau" yaml:"mirostat_tau"`
Mirostat int `json:"mirostat" yaml:"mirostat"`
Seed int `json:"seed" yaml:"seed"`
// Image (not supported by OpenAI)
Mode int `json:"mode"`
Step int `json:"step"`
}
func defaultRequest(modelFile string) OpenAIRequest {
return OpenAIRequest{
TopP: 0.7,
TopK: 80,
Maxtokens: 512,
Temperature: 0.9,
Model: modelFile,
}
}
// https://platform.openai.com/docs/api-reference/completions
func completionEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := config.Model
if config.TemplateConfig.Completion != "" {
templateFile = config.TemplateConfig.Completion
}
var result []Choice
for _, i := range config.PromptStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
Input string
}{Input: i})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input, config, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
return err
}
result = append(result, r...)
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "text_completion",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
// https://platform.openai.com/docs/api-reference/embeddings
func embeddingsEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
items := []Item{}
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := ModelEmbedding("", s, o.loader, *config)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := ModelEmbedding(s, []int{}, o.loader, *config)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
func chatEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
process := func(s string, req *OpenAIRequest, config *Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
initialMessage := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Role: "assistant"}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
ComputeChoices(s, req, config, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Content: s}}},
Object: "chat.completion.chunk",
}
log.Debug().Msgf("Sending goroutine: %s", s)
responses <- resp
return true
})
close(responses)
}
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
var predInput string
mess := []string{}
for _, i := range input.Messages {
var content string
r := config.Roles[i.Role]
if r != "" {
content = fmt.Sprint(r, " ", i.Content)
} else {
content = i.Content
}
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
if input.Stream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
// c.Set("Content-Type", "text/event-stream")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := config.Model
if config.TemplateConfig.Chat != "" {
templateFile = config.TemplateConfig.Chat
}
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
Input string
}{Input: predInput})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
if input.Stream {
responses := make(chan OpenAIResponse)
go process(predInput, input, config, o.loader, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
for ev := range responses {
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
log.Debug().Msgf("Sending chunk: %s", buf.String())
fmt.Fprintf(w, "data: %v\n", buf.String())
w.Flush()
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{FinishReason: "stop"}},
}
respData, _ := json.Marshal(resp)
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
}
result, err := ComputeChoices(predInput, input, config, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Message: &Message{Role: "assistant", Content: s}})
}, nil)
if err != nil {
return err
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
}
}
func editEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := config.Model
if config.TemplateConfig.Edit != "" {
templateFile = config.TemplateConfig.Edit
}
var result []Choice
for _, i := range config.InputStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.loader.TemplatePrefix(templateFile, struct {
Input string
Instruction string
}{Input: i})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input, config, o.loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
return err
}
result = append(result, r...)
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "edit",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
// https://platform.openai.com/docs/api-reference/images/create
/*
*
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "A cute baby sea otter",
"n": 1,
"size": "512x512"
}'
*
*/
func imageEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, o.loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
if m == "" {
m = model.StableDiffusionBackend
}
log.Debug().Msgf("Loading model: %+v", m)
config, input, err := readConfig(m, input, cm, o.loader, o.debug, 0, 0, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
// XXX: Only stablediffusion is supported for now
if config.Backend == "" {
config.Backend = model.StableDiffusionBackend
}
sizeParts := strings.Split(input.Size, "x")
if len(sizeParts) != 2 {
return fmt.Errorf("Invalid value for 'size'")
}
width, err := strconv.Atoi(sizeParts[0])
if err != nil {
return fmt.Errorf("Invalid value for 'size'")
}
height, err := strconv.Atoi(sizeParts[1])
if err != nil {
return fmt.Errorf("Invalid value for 'size'")
}
b64JSON := false
if input.ResponseFormat == "b64_json" {
b64JSON = true
}
var result []Item
for _, i := range config.PromptStrings {
n := input.N
if input.N == 0 {
n = 1
}
for j := 0; j < n; j++ {
prompts := strings.Split(i, "|")
positive_prompt := prompts[0]
negative_prompt := ""
if len(prompts) > 1 {
negative_prompt = prompts[1]
}
mode := 0
step := 15
if input.Mode != 0 {
mode = input.Mode
}
if input.Step != 0 {
step = input.Step
}
tempDir := ""
if !b64JSON {
tempDir = o.imageDir
}
// Create a temporary file
outputFile, err := ioutil.TempFile(tempDir, "b64")
if err != nil {
return err
}
outputFile.Close()
output := outputFile.Name() + ".png"
// Rename the temporary file
err = os.Rename(outputFile.Name(), output)
if err != nil {
return err
}
baseURL := c.BaseURL()
fn, err := ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, o.loader, *config)
if err != nil {
return err
}
if err := fn(); err != nil {
return err
}
item := &Item{}
if b64JSON {
defer os.RemoveAll(output)
data, err := os.ReadFile(output)
if err != nil {
return err
}
item.B64JSON = base64.StdEncoding.EncodeToString(data)
} else {
base := filepath.Base(output)
item.URL = baseURL + "/generated-images/" + base
}
result = append(result, *item)
}
}
resp := &OpenAIResponse{
Data: result,
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}
// https://platform.openai.com/docs/api-reference/audio/create
func transcriptEndpoint(cm *ConfigMerger, o *Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, o.loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(m, input, cm, o.loader, o.debug, o.threads, o.ctxSize, o.f16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
// retrieve the file data from the request
file, err := c.FormFile("file")
if err != nil {
return err
}
f, err := file.Open()
if err != nil {
return err
}
defer f.Close()
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return err
}
defer os.RemoveAll(dir)
dst := filepath.Join(dir, path.Base(file.Filename))
dstFile, err := os.Create(dst)
if err != nil {
return err
}
if _, err := io.Copy(dstFile, f); err != nil {
log.Debug().Msgf("Audio file copying error %+v - %+v - err %+v", file.Filename, dst, err)
return err
}
log.Debug().Msgf("Audio file copied to: %+v", dst)
whisperModel, err := o.loader.BackendLoader(model.WhisperBackend, config.Model, []llama.ModelOption{}, uint32(config.Threads))
if err != nil {
return err
}
if whisperModel == nil {
return fmt.Errorf("could not load whisper model")
}
w, ok := whisperModel.(whisper.Model)
if !ok {
return fmt.Errorf("loader returned non-whisper object")
}
tr, err := whisperutil.Transcript(w, dst, input.Language, uint(config.Threads))
if err != nil {
return err
}
log.Debug().Msgf("Trascribed: %+v", tr)
// TODO: handle different outputs here
return c.Status(http.StatusOK).JSON(fiber.Map{"text": tr})
}
}
func listModels(loader *model.ModelLoader, cm *ConfigMerger) func(ctx *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
models, err := loader.ListModels()
if err != nil {
return err
}
var mm map[string]interface{} = map[string]interface{}{}
dataModels := []OpenAIModel{}
for _, m := range models {
mm[m] = nil
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
}
for _, k := range cm.ListConfigs() {
if _, exists := mm[k]; !exists {
dataModels = append(dataModels, OpenAIModel{ID: k, Object: "model"})
}
}
return c.JSON(struct {
Object string `json:"object"`
Data []OpenAIModel `json:"data"`
}{
Object: "list",
Data: dataModels,
})
}
}

@ -1,105 +0,0 @@
package openai
import (
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/pkg/grammar"
)
// APIError provides error information returned by the OpenAI API.
type APIError struct {
Code any `json:"code,omitempty"`
Message string `json:"message"`
Param *string `json:"param,omitempty"`
Type string `json:"type"`
}
type ErrorResponse struct {
Error *APIError `json:"error,omitempty"`
}
type OpenAIUsage struct {
PromptTokens int `json:"prompt_tokens"`
CompletionTokens int `json:"completion_tokens"`
TotalTokens int `json:"total_tokens"`
}
type Item struct {
Embedding []float32 `json:"embedding"`
Index int `json:"index"`
Object string `json:"object,omitempty"`
// Images
URL string `json:"url,omitempty"`
B64JSON string `json:"b64_json,omitempty"`
}
type OpenAIResponse struct {
Created int `json:"created,omitempty"`
Object string `json:"object,omitempty"`
ID string `json:"id,omitempty"`
Model string `json:"model,omitempty"`
Choices []Choice `json:"choices,omitempty"`
Data []Item `json:"data,omitempty"`
Usage OpenAIUsage `json:"usage"`
}
type Choice struct {
Index int `json:"index"`
FinishReason string `json:"finish_reason,omitempty"`
Message *Message `json:"message,omitempty"`
Delta *Message `json:"delta,omitempty"`
Text string `json:"text,omitempty"`
}
type Message struct {
// The message role
Role string `json:"role,omitempty" yaml:"role"`
// The message content
Content *string `json:"content" yaml:"content"`
// A result of a function call
FunctionCall interface{} `json:"function_call,omitempty" yaml:"function_call,omitempty"`
}
type OpenAIModel struct {
ID string `json:"id"`
Object string `json:"object"`
}
type OpenAIRequest struct {
config.PredictionOptions
// whisper
File string `json:"file" validate:"required"`
//whisper/image
ResponseFormat string `json:"response_format"`
// image
Size string `json:"size"`
// Prompt is read only by completion/image API calls
Prompt interface{} `json:"prompt" yaml:"prompt"`
// Edit endpoint
Instruction string `json:"instruction" yaml:"instruction"`
Input interface{} `json:"input" yaml:"input"`
Stop interface{} `json:"stop" yaml:"stop"`
// Messages is read only by chat/completion API calls
Messages []Message `json:"messages" yaml:"messages"`
// A list of available functions to call
Functions []grammar.Function `json:"functions" yaml:"functions"`
FunctionCall interface{} `json:"function_call" yaml:"function_call"` // might be a string or an object
Stream bool `json:"stream"`
// Image (not supported by OpenAI)
Mode int `json:"mode"`
Step int `json:"step"`
// A grammar to constrain the LLM output
Grammar string `json:"grammar" yaml:"grammar"`
JSONFunctionGrammarObject *grammar.JSONFunctionStructure `json:"grammar_json_functions" yaml:"grammar_json_functions"`
}

@ -1,322 +0,0 @@
package openai
import (
"bufio"
"bytes"
"encoding/json"
"fmt"
"strings"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/go-skynet/LocalAI/pkg/grammar"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
func ChatEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
emptyMessage := ""
process := func(s string, req *OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
initialMessage := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Role: "assistant", Content: &emptyMessage}}},
Object: "chat.completion.chunk",
}
responses <- initialMessage
ComputeChoices(s, req.N, config, o, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{{Delta: &Message{Content: &s}, Index: 0}},
Object: "chat.completion.chunk",
}
responses <- resp
return true
})
close(responses)
}
return func(c *fiber.Ctx) error {
processFunctions := false
funcs := grammar.Functions{}
model, input, err := readInput(c, o.Loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Configuration read: %+v", config)
// Allow the user to set custom actions via config file
// to be "embedded" in each model
noActionName := "answer"
noActionDescription := "use this action to answer without performing any action"
if config.FunctionsConfig.NoActionFunctionName != "" {
noActionName = config.FunctionsConfig.NoActionFunctionName
}
if config.FunctionsConfig.NoActionDescriptionName != "" {
noActionDescription = config.FunctionsConfig.NoActionDescriptionName
}
// process functions if we have any defined or if we have a function call string
if len(input.Functions) > 0 && config.ShouldUseFunctions() {
log.Debug().Msgf("Response needs to process functions")
processFunctions = true
noActionGrammar := grammar.Function{
Name: noActionName,
Description: noActionDescription,
Parameters: map[string]interface{}{
"properties": map[string]interface{}{
"message": map[string]interface{}{
"type": "string",
"description": "The message to reply the user with",
}},
},
}
// Append the no action function
funcs = append(funcs, input.Functions...)
if !config.FunctionsConfig.DisableNoAction {
funcs = append(funcs, noActionGrammar)
}
// Force picking one of the functions by the request
if config.FunctionToCall() != "" {
funcs = funcs.Select(config.FunctionToCall())
}
// Update input grammar
jsStruct := funcs.ToJSONStructure()
config.Grammar = jsStruct.Grammar("")
} else if input.JSONFunctionGrammarObject != nil {
config.Grammar = input.JSONFunctionGrammarObject.Grammar("")
}
// functions are not supported in stream mode (yet?)
toStream := input.Stream && !processFunctions
log.Debug().Msgf("Parameters: %+v", config)
var predInput string
mess := []string{}
for _, i := range input.Messages {
var content string
role := i.Role
// if function call, we might want to customize the role so we can display better that the "assistant called a json action"
// if an "assistant_function_call" role is defined, we use it, otherwise we use the role that is passed by in the request
if i.FunctionCall != nil && i.Role == "assistant" {
roleFn := "assistant_function_call"
r := config.Roles[roleFn]
if r != "" {
role = roleFn
}
}
r := config.Roles[role]
contentExists := i.Content != nil && *i.Content != ""
if r != "" {
if contentExists {
content = fmt.Sprint(r, " ", *i.Content)
}
if i.FunctionCall != nil {
j, err := json.Marshal(i.FunctionCall)
if err == nil {
if contentExists {
content += "\n" + fmt.Sprint(r, " ", string(j))
} else {
content = fmt.Sprint(r, " ", string(j))
}
}
}
} else {
if contentExists {
content = fmt.Sprint(*i.Content)
}
if i.FunctionCall != nil {
j, err := json.Marshal(i.FunctionCall)
if err == nil {
if contentExists {
content += "\n" + string(j)
} else {
content = string(j)
}
}
}
}
mess = append(mess, content)
}
predInput = strings.Join(mess, "\n")
log.Debug().Msgf("Prompt (before templating): %s", predInput)
if toStream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
// c.Set("Content-Type", "text/event-stream")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := config.Model
if config.TemplateConfig.Chat != "" && !processFunctions {
templateFile = config.TemplateConfig.Chat
}
if config.TemplateConfig.Functions != "" && processFunctions {
templateFile = config.TemplateConfig.Functions
}
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.TemplatePrefix(templateFile, struct {
Input string
Functions []grammar.Function
}{
Input: predInput,
Functions: funcs,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
} else {
log.Debug().Msgf("Template failed loading: %s", err.Error())
}
log.Debug().Msgf("Prompt (after templating): %s", predInput)
if processFunctions {
log.Debug().Msgf("Grammar: %+v", config.Grammar)
}
if toStream {
responses := make(chan OpenAIResponse)
go process(predInput, input, config, o.Loader, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
for ev := range responses {
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
log.Debug().Msgf("Sending chunk: %s", buf.String())
fmt.Fprintf(w, "data: %v\n", buf.String())
w.Flush()
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{
{
FinishReason: "stop",
Index: 0,
Delta: &Message{Content: &emptyMessage},
}},
Object: "chat.completion.chunk",
}
respData, _ := json.Marshal(resp)
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
}
result, err := ComputeChoices(predInput, input.N, config, o, o.Loader, func(s string, c *[]Choice) {
if processFunctions {
// As we have to change the result before processing, we can't stream the answer (yet?)
ss := map[string]interface{}{}
json.Unmarshal([]byte(s), &ss)
log.Debug().Msgf("Function return: %s %+v", s, ss)
// The grammar defines the function name as "function", while OpenAI returns "name"
func_name := ss["function"]
// Similarly, while here arguments is a map[string]interface{}, OpenAI actually want a stringified object
args := ss["arguments"] // arguments needs to be a string, but we return an object from the grammar result (TODO: fix)
d, _ := json.Marshal(args)
ss["arguments"] = string(d)
ss["name"] = func_name
// if do nothing, reply with a message
if func_name == noActionName {
log.Debug().Msgf("nothing to do, computing a reply")
// If there is a message that the LLM already sends as part of the JSON reply, use it
arguments := map[string]interface{}{}
json.Unmarshal([]byte(d), &arguments)
m, exists := arguments["message"]
if exists {
switch message := m.(type) {
case string:
if message != "" {
log.Debug().Msgf("Reply received from LLM: %s", message)
message = backend.Finetune(*config, predInput, message)
log.Debug().Msgf("Reply received from LLM(finetuned): %s", message)
*c = append(*c, Choice{Message: &Message{Role: "assistant", Content: &message}})
return
}
}
}
log.Debug().Msgf("No action received from LLM, without a message, computing a reply")
// Otherwise ask the LLM to understand the JSON output and the context, and return a message
// Note: This costs (in term of CPU) another computation
config.Grammar = ""
predFunc, err := backend.ModelInference(predInput, o.Loader, *config, o, nil)
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return
}
prediction, err := predFunc()
if err != nil {
log.Error().Msgf("inference error: %s", err.Error())
return
}
prediction = backend.Finetune(*config, predInput, prediction)
*c = append(*c, Choice{Message: &Message{Role: "assistant", Content: &prediction}})
} else {
// otherwise reply with the function call
*c = append(*c, Choice{
FinishReason: "function_call",
Message: &Message{Role: "assistant", FunctionCall: ss},
})
}
return
}
*c = append(*c, Choice{FinishReason: "stop", Index: 0, Message: &Message{Role: "assistant", Content: &s}})
}, nil)
if err != nil {
return err
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "chat.completion",
}
respData, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", respData)
// Return the prediction in the response body
return c.JSON(resp)
}
}

@ -1,159 +0,0 @@
package openai
import (
"bufio"
"bytes"
"encoding/json"
"errors"
"fmt"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
"github.com/valyala/fasthttp"
)
// https://platform.openai.com/docs/api-reference/completions
func CompletionEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
process := func(s string, req *OpenAIRequest, config *config.Config, loader *model.ModelLoader, responses chan OpenAIResponse) {
ComputeChoices(s, req.N, config, o, loader, func(s string, c *[]Choice) {}, func(s string) bool {
resp := OpenAIResponse{
Model: req.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{
{
Index: 0,
Text: s,
},
},
Object: "text_completion",
}
log.Debug().Msgf("Sending goroutine: %s", s)
responses <- resp
return true
})
close(responses)
}
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.Loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("`input`: %+v", input)
config, input, err := readConfig(model, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
if input.Stream {
log.Debug().Msgf("Stream request received")
c.Context().SetContentType("text/event-stream")
//c.Response().Header.SetContentType(fiber.MIMETextHTMLCharsetUTF8)
//c.Set("Content-Type", "text/event-stream")
c.Set("Cache-Control", "no-cache")
c.Set("Connection", "keep-alive")
c.Set("Transfer-Encoding", "chunked")
}
templateFile := config.Model
if config.TemplateConfig.Completion != "" {
templateFile = config.TemplateConfig.Completion
}
if input.Stream {
if len(config.PromptStrings) > 1 {
return errors.New("cannot handle more than 1 `PromptStrings` when Streaming")
}
predInput := config.PromptStrings[0]
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.TemplatePrefix(templateFile, struct {
Input string
}{
Input: predInput,
})
if err == nil {
predInput = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", predInput)
}
responses := make(chan OpenAIResponse)
go process(predInput, input, config, o.Loader, responses)
c.Context().SetBodyStreamWriter(fasthttp.StreamWriter(func(w *bufio.Writer) {
for ev := range responses {
var buf bytes.Buffer
enc := json.NewEncoder(&buf)
enc.Encode(ev)
log.Debug().Msgf("Sending chunk: %s", buf.String())
fmt.Fprintf(w, "data: %v\n", buf.String())
w.Flush()
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: []Choice{
{
Index: 0,
FinishReason: "stop",
},
},
Object: "text_completion",
}
respData, _ := json.Marshal(resp)
w.WriteString(fmt.Sprintf("data: %s\n\n", respData))
w.WriteString("data: [DONE]\n\n")
w.Flush()
}))
return nil
}
var result []Choice
for k, i := range config.PromptStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.TemplatePrefix(templateFile, struct {
Input string
}{
Input: i,
})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input.N, config, o, o.Loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s, FinishReason: "stop", Index: k})
}, nil)
if err != nil {
return err
}
result = append(result, r...)
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "text_completion",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}

@ -1,67 +0,0 @@
package openai
import (
"encoding/json"
"fmt"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func EditEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.Loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
templateFile := config.Model
if config.TemplateConfig.Edit != "" {
templateFile = config.TemplateConfig.Edit
}
var result []Choice
for _, i := range config.InputStrings {
// A model can have a "file.bin.tmpl" file associated with a prompt template prefix
templatedInput, err := o.Loader.TemplatePrefix(templateFile, struct {
Input string
Instruction string
}{Input: i})
if err == nil {
i = templatedInput
log.Debug().Msgf("Template found, input modified to: %s", i)
}
r, err := ComputeChoices(i, input.N, config, o, o.Loader, func(s string, c *[]Choice) {
*c = append(*c, Choice{Text: s})
}, nil)
if err != nil {
return err
}
result = append(result, r...)
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Choices: result,
Object: "edit",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}

@ -1,70 +0,0 @@
package openai
import (
"encoding/json"
"fmt"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
// https://platform.openai.com/docs/api-reference/embeddings
func EmbeddingsEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
model, input, err := readInput(c, o.Loader, true)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(model, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
items := []Item{}
for i, s := range config.InputToken {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding("", s, o.Loader, *config, o)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
for i, s := range config.InputStrings {
// get the model function to call for the result
embedFn, err := backend.ModelEmbedding(s, []int{}, o.Loader, *config, o)
if err != nil {
return err
}
embeddings, err := embedFn()
if err != nil {
return err
}
items = append(items, Item{Embedding: embeddings, Index: i, Object: "embedding"})
}
resp := &OpenAIResponse{
Model: input.Model, // we have to return what the user sent here, due to OpenAI spec.
Data: items,
Object: "list",
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}

@ -1,158 +0,0 @@
package openai
import (
"encoding/base64"
"encoding/json"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"strconv"
"strings"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
// https://platform.openai.com/docs/api-reference/images/create
/*
*
curl http://localhost:8080/v1/images/generations \
-H "Content-Type: application/json" \
-d '{
"prompt": "A cute baby sea otter",
"n": 1,
"size": "512x512"
}'
*
*/
func ImageEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, o.Loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
if m == "" {
m = model.StableDiffusionBackend
}
log.Debug().Msgf("Loading model: %+v", m)
config, input, err := readConfig(m, input, cm, o.Loader, o.Debug, 0, 0, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
log.Debug().Msgf("Parameter Config: %+v", config)
// XXX: Only stablediffusion is supported for now
if config.Backend == "" {
config.Backend = model.StableDiffusionBackend
}
sizeParts := strings.Split(input.Size, "x")
if len(sizeParts) != 2 {
return fmt.Errorf("Invalid value for 'size'")
}
width, err := strconv.Atoi(sizeParts[0])
if err != nil {
return fmt.Errorf("Invalid value for 'size'")
}
height, err := strconv.Atoi(sizeParts[1])
if err != nil {
return fmt.Errorf("Invalid value for 'size'")
}
b64JSON := false
if input.ResponseFormat == "b64_json" {
b64JSON = true
}
var result []Item
for _, i := range config.PromptStrings {
n := input.N
if input.N == 0 {
n = 1
}
for j := 0; j < n; j++ {
prompts := strings.Split(i, "|")
positive_prompt := prompts[0]
negative_prompt := ""
if len(prompts) > 1 {
negative_prompt = prompts[1]
}
mode := 0
step := 15
if input.Mode != 0 {
mode = input.Mode
}
if input.Step != 0 {
step = input.Step
}
tempDir := ""
if !b64JSON {
tempDir = o.ImageDir
}
// Create a temporary file
outputFile, err := ioutil.TempFile(tempDir, "b64")
if err != nil {
return err
}
outputFile.Close()
output := outputFile.Name() + ".png"
// Rename the temporary file
err = os.Rename(outputFile.Name(), output)
if err != nil {
return err
}
baseURL := c.BaseURL()
fn, err := backend.ImageGeneration(height, width, mode, step, input.Seed, positive_prompt, negative_prompt, output, o.Loader, *config, o)
if err != nil {
return err
}
if err := fn(); err != nil {
return err
}
item := &Item{}
if b64JSON {
defer os.RemoveAll(output)
data, err := os.ReadFile(output)
if err != nil {
return err
}
item.B64JSON = base64.StdEncoding.EncodeToString(data)
} else {
base := filepath.Base(output)
item.URL = baseURL + "/generated-images/" + base
}
result = append(result, *item)
}
}
resp := &OpenAIResponse{
Data: result,
}
jsonResult, _ := json.Marshal(resp)
log.Debug().Msgf("Response: %s", jsonResult)
// Return the prediction in the response body
return c.JSON(resp)
}
}

@ -1,36 +0,0 @@
package openai
import (
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
model "github.com/go-skynet/LocalAI/pkg/model"
)
func ComputeChoices(predInput string, n int, config *config.Config, o *options.Option, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
result := []Choice{}
if n == 0 {
n = 1
}
// get the model function to call for the result
predFunc, err := backend.ModelInference(predInput, loader, *config, o, tokenCallback)
if err != nil {
return result, err
}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return result, err
}
prediction = backend.Finetune(*config, predInput, prediction)
cb(prediction, &result)
//result = append(result, Choice{Text: prediction})
}
return result, err
}

@ -1,37 +0,0 @@
package openai
import (
config "github.com/go-skynet/LocalAI/api/config"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
)
func ListModelsEndpoint(loader *model.ModelLoader, cm *config.ConfigLoader) func(ctx *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
models, err := loader.ListModels()
if err != nil {
return err
}
var mm map[string]interface{} = map[string]interface{}{}
dataModels := []OpenAIModel{}
for _, m := range models {
mm[m] = nil
dataModels = append(dataModels, OpenAIModel{ID: m, Object: "model"})
}
for _, k := range cm.ListConfigs() {
if _, exists := mm[k]; !exists {
dataModels = append(dataModels, OpenAIModel{ID: k, Object: "model"})
}
}
return c.JSON(struct {
Object string `json:"object"`
Data []OpenAIModel `json:"data"`
}{
Object: "list",
Data: dataModels,
})
}
}

@ -1,234 +0,0 @@
package openai
import (
"encoding/json"
"fmt"
"os"
"path/filepath"
"strings"
config "github.com/go-skynet/LocalAI/api/config"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
func readInput(c *fiber.Ctx, loader *model.ModelLoader, randomModel bool) (string, *OpenAIRequest, error) {
input := new(OpenAIRequest)
// Get input data from the request body
if err := c.BodyParser(input); err != nil {
return "", nil, err
}
modelFile := input.Model
if c.Params("model") != "" {
modelFile = c.Params("model")
}
received, _ := json.Marshal(input)
log.Debug().Msgf("Request received: %s", string(received))
// Set model from bearer token, if available
bearer := strings.TrimLeft(c.Get("authorization"), "Bearer ")
bearerExists := bearer != "" && loader.ExistsInModelPath(bearer)
// If no model was specified, take the first available
if modelFile == "" && !bearerExists && randomModel {
models, _ := loader.ListModels()
if len(models) > 0 {
modelFile = models[0]
log.Debug().Msgf("No model specified, using: %s", modelFile)
} else {
log.Debug().Msgf("No model specified, returning error")
return "", nil, fmt.Errorf("no model specified")
}
}
// If a model is found in bearer token takes precedence
if bearerExists {
log.Debug().Msgf("Using model from bearer token: %s", bearer)
modelFile = bearer
}
return modelFile, input, nil
}
func updateConfig(config *config.Config, input *OpenAIRequest) {
if input.Echo {
config.Echo = input.Echo
}
if input.TopK != 0 {
config.TopK = input.TopK
}
if input.TopP != 0 {
config.TopP = input.TopP
}
if input.Grammar != "" {
config.Grammar = input.Grammar
}
if input.Temperature != 0 {
config.Temperature = input.Temperature
}
if input.Maxtokens != 0 {
config.Maxtokens = input.Maxtokens
}
switch stop := input.Stop.(type) {
case string:
if stop != "" {
config.StopWords = append(config.StopWords, stop)
}
case []interface{}:
for _, pp := range stop {
if s, ok := pp.(string); ok {
config.StopWords = append(config.StopWords, s)
}
}
}
if input.RepeatPenalty != 0 {
config.RepeatPenalty = input.RepeatPenalty
}
if input.Keep != 0 {
config.Keep = input.Keep
}
if input.Batch != 0 {
config.Batch = input.Batch
}
if input.F16 {
config.F16 = input.F16
}
if input.IgnoreEOS {
config.IgnoreEOS = input.IgnoreEOS
}
if input.Seed != 0 {
config.Seed = input.Seed
}
if input.Mirostat != 0 {
config.Mirostat = input.Mirostat
}
if input.MirostatETA != 0 {
config.MirostatETA = input.MirostatETA
}
if input.MirostatTAU != 0 {
config.MirostatTAU = input.MirostatTAU
}
if input.TypicalP != 0 {
config.TypicalP = input.TypicalP
}
switch inputs := input.Input.(type) {
case string:
if inputs != "" {
config.InputStrings = append(config.InputStrings, inputs)
}
case []interface{}:
for _, pp := range inputs {
switch i := pp.(type) {
case string:
config.InputStrings = append(config.InputStrings, i)
case []interface{}:
tokens := []int{}
for _, ii := range i {
tokens = append(tokens, int(ii.(float64)))
}
config.InputToken = append(config.InputToken, tokens)
}
}
}
// Can be either a string or an object
switch fnc := input.FunctionCall.(type) {
case string:
if fnc != "" {
config.SetFunctionCallString(fnc)
}
case map[string]interface{}:
var name string
n, exists := fnc["name"]
if exists {
nn, e := n.(string)
if !e {
name = nn
}
}
config.SetFunctionCallNameString(name)
}
switch p := input.Prompt.(type) {
case string:
config.PromptStrings = append(config.PromptStrings, p)
case []interface{}:
for _, pp := range p {
if s, ok := pp.(string); ok {
config.PromptStrings = append(config.PromptStrings, s)
}
}
}
}
func readConfig(modelFile string, input *OpenAIRequest, cm *config.ConfigLoader, loader *model.ModelLoader, debug bool, threads, ctx int, f16 bool) (*config.Config, *OpenAIRequest, error) {
// Load a config file if present after the model name
modelConfig := filepath.Join(loader.ModelPath, modelFile+".yaml")
var cfg *config.Config
defaults := func() {
cfg = config.DefaultConfig(modelFile)
cfg.ContextSize = ctx
cfg.Threads = threads
cfg.F16 = f16
cfg.Debug = debug
}
cfgExisting, exists := cm.GetConfig(modelFile)
if !exists {
if _, err := os.Stat(modelConfig); err == nil {
if err := cm.LoadConfig(modelConfig); err != nil {
return nil, nil, fmt.Errorf("failed loading model config (%s) %s", modelConfig, err.Error())
}
cfgExisting, exists = cm.GetConfig(modelFile)
if exists {
cfg = &cfgExisting
} else {
defaults()
}
} else {
defaults()
}
} else {
cfg = &cfgExisting
}
// Set the parameters for the language model prediction
updateConfig(cfg, input)
// Don't allow 0 as setting
if cfg.Threads == 0 {
if threads != 0 {
cfg.Threads = threads
} else {
cfg.Threads = 4
}
}
// Enforce debug flag if passed from CLI
if debug {
cfg.Debug = true
}
return cfg, input, nil
}

@ -1,71 +0,0 @@
package openai
import (
"fmt"
"io"
"net/http"
"os"
"path"
"path/filepath"
"github.com/go-skynet/LocalAI/api/backend"
config "github.com/go-skynet/LocalAI/api/config"
"github.com/go-skynet/LocalAI/api/options"
"github.com/gofiber/fiber/v2"
"github.com/rs/zerolog/log"
)
// https://platform.openai.com/docs/api-reference/audio/create
func TranscriptEndpoint(cm *config.ConfigLoader, o *options.Option) func(c *fiber.Ctx) error {
return func(c *fiber.Ctx) error {
m, input, err := readInput(c, o.Loader, false)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
config, input, err := readConfig(m, input, cm, o.Loader, o.Debug, o.Threads, o.ContextSize, o.F16)
if err != nil {
return fmt.Errorf("failed reading parameters from request:%w", err)
}
// retrieve the file data from the request
file, err := c.FormFile("file")
if err != nil {
return err
}
f, err := file.Open()
if err != nil {
return err
}
defer f.Close()
dir, err := os.MkdirTemp("", "whisper")
if err != nil {
return err
}
defer os.RemoveAll(dir)
dst := filepath.Join(dir, path.Base(file.Filename))
dstFile, err := os.Create(dst)
if err != nil {
return err
}
if _, err := io.Copy(dstFile, f); err != nil {
log.Debug().Msgf("Audio file copying error %+v - %+v - err %+v", file.Filename, dst, err)
return err
}
log.Debug().Msgf("Audio file copied to: %+v", dst)
tr, err := backend.ModelTranscription(dst, input.Language, o.Loader, *config, o)
if err != nil {
return err
}
log.Debug().Msgf("Trascribed: %+v", tr)
// TODO: handle different outputs here
return c.Status(http.StatusOK).JSON(tr)
}
}

@ -0,0 +1,108 @@
package api
import (
"context"
model "github.com/go-skynet/LocalAI/pkg/model"
)
type Option struct {
context context.Context
configFile string
loader *model.ModelLoader
uploadLimitMB, threads, ctxSize int
f16 bool
debug, disableMessage bool
imageDir string
cors bool
corsAllowOrigins string
}
type AppOption func(*Option)
func newOptions(o ...AppOption) *Option {
opt := &Option{
context: context.Background(),
uploadLimitMB: 15,
threads: 1,
ctxSize: 512,
debug: true,
disableMessage: true,
}
for _, oo := range o {
oo(opt)
}
return opt
}
func WithCors(b bool) AppOption {
return func(o *Option) {
o.cors = b
}
}
func WithCorsAllowOrigins(b string) AppOption {
return func(o *Option) {
o.corsAllowOrigins = b
}
}
func WithContext(ctx context.Context) AppOption {
return func(o *Option) {
o.context = ctx
}
}
func WithConfigFile(configFile string) AppOption {
return func(o *Option) {
o.configFile = configFile
}
}
func WithModelLoader(loader *model.ModelLoader) AppOption {
return func(o *Option) {
o.loader = loader
}
}
func WithUploadLimitMB(limit int) AppOption {
return func(o *Option) {
o.uploadLimitMB = limit
}
}
func WithThreads(threads int) AppOption {
return func(o *Option) {
o.threads = threads
}
}
func WithContextSize(ctxSize int) AppOption {
return func(o *Option) {
o.ctxSize = ctxSize
}
}
func WithF16(f16 bool) AppOption {
return func(o *Option) {
o.f16 = f16
}
}
func WithDebug(debug bool) AppOption {
return func(o *Option) {
o.debug = debug
}
}
func WithDisableMessage(disableMessage bool) AppOption {
return func(o *Option) {
o.disableMessage = disableMessage
}
}
func WithImageDir(imageDir string) AppOption {
return func(o *Option) {
o.imageDir = imageDir
}
}

@ -1,186 +0,0 @@
package options
import (
"context"
"embed"
"encoding/json"
"github.com/go-skynet/LocalAI/pkg/gallery"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/rs/zerolog/log"
)
type Option struct {
Context context.Context
ConfigFile string
Loader *model.ModelLoader
UploadLimitMB, Threads, ContextSize int
F16 bool
Debug, DisableMessage bool
ImageDir string
AudioDir string
CORS bool
PreloadJSONModels string
PreloadModelsFromPath string
CORSAllowOrigins string
Galleries []gallery.Gallery
BackendAssets embed.FS
AssetsDestination string
ExternalGRPCBackends map[string]string
AutoloadGalleries bool
}
type AppOption func(*Option)
func NewOptions(o ...AppOption) *Option {
opt := &Option{
Context: context.Background(),
UploadLimitMB: 15,
Threads: 1,
ContextSize: 512,
Debug: true,
DisableMessage: true,
}
for _, oo := range o {
oo(opt)
}
return opt
}
func WithCors(b bool) AppOption {
return func(o *Option) {
o.CORS = b
}
}
var EnableGalleriesAutoload = func(o *Option) {
o.AutoloadGalleries = true
}
func WithExternalBackend(name string, uri string) AppOption {
return func(o *Option) {
if o.ExternalGRPCBackends == nil {
o.ExternalGRPCBackends = make(map[string]string)
}
o.ExternalGRPCBackends[name] = uri
}
}
func WithCorsAllowOrigins(b string) AppOption {
return func(o *Option) {
o.CORSAllowOrigins = b
}
}
func WithBackendAssetsOutput(out string) AppOption {
return func(o *Option) {
o.AssetsDestination = out
}
}
func WithBackendAssets(f embed.FS) AppOption {
return func(o *Option) {
o.BackendAssets = f
}
}
func WithStringGalleries(galls string) AppOption {
return func(o *Option) {
if galls == "" {
log.Debug().Msgf("no galleries to load")
return
}
var galleries []gallery.Gallery
if err := json.Unmarshal([]byte(galls), &galleries); err != nil {
log.Error().Msgf("failed loading galleries: %s", err.Error())
}
o.Galleries = append(o.Galleries, galleries...)
}
}
func WithGalleries(galleries []gallery.Gallery) AppOption {
return func(o *Option) {
o.Galleries = append(o.Galleries, galleries...)
}
}
func WithContext(ctx context.Context) AppOption {
return func(o *Option) {
o.Context = ctx
}
}
func WithYAMLConfigPreload(configFile string) AppOption {
return func(o *Option) {
o.PreloadModelsFromPath = configFile
}
}
func WithJSONStringPreload(configFile string) AppOption {
return func(o *Option) {
o.PreloadJSONModels = configFile
}
}
func WithConfigFile(configFile string) AppOption {
return func(o *Option) {
o.ConfigFile = configFile
}
}
func WithModelLoader(loader *model.ModelLoader) AppOption {
return func(o *Option) {
o.Loader = loader
}
}
func WithUploadLimitMB(limit int) AppOption {
return func(o *Option) {
o.UploadLimitMB = limit
}
}
func WithThreads(threads int) AppOption {
return func(o *Option) {
o.Threads = threads
}
}
func WithContextSize(ctxSize int) AppOption {
return func(o *Option) {
o.ContextSize = ctxSize
}
}
func WithF16(f16 bool) AppOption {
return func(o *Option) {
o.F16 = f16
}
}
func WithDebug(debug bool) AppOption {
return func(o *Option) {
o.Debug = debug
}
}
func WithDisableMessage(disableMessage bool) AppOption {
return func(o *Option) {
o.DisableMessage = disableMessage
}
}
func WithAudioDir(audioDir string) AppOption {
return func(o *Option) {
o.AudioDir = audioDir
}
}
func WithImageDir(imageDir string) AppOption {
return func(o *Option) {
o.ImageDir = imageDir
}
}

@ -0,0 +1,561 @@
package api
import (
"fmt"
"regexp"
"strings"
"sync"
"github.com/donomii/go-rwkv.cpp"
model "github.com/go-skynet/LocalAI/pkg/model"
"github.com/go-skynet/LocalAI/pkg/stablediffusion"
"github.com/go-skynet/bloomz.cpp"
bert "github.com/go-skynet/go-bert.cpp"
transformers "github.com/go-skynet/go-ggml-transformers.cpp"
llama "github.com/go-skynet/go-llama.cpp"
gpt4all "github.com/nomic-ai/gpt4all/gpt4all-bindings/golang"
)
// mutex still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
var mutexMap sync.Mutex
var mutexes map[string]*sync.Mutex = make(map[string]*sync.Mutex)
func defaultLLamaOpts(c Config) []llama.ModelOption {
llamaOpts := []llama.ModelOption{}
if c.ContextSize != 0 {
llamaOpts = append(llamaOpts, llama.SetContext(c.ContextSize))
}
if c.F16 {
llamaOpts = append(llamaOpts, llama.EnableF16Memory)
}
if c.Embeddings {
llamaOpts = append(llamaOpts, llama.EnableEmbeddings)
}
if c.NGPULayers != 0 {
llamaOpts = append(llamaOpts, llama.SetGPULayers(c.NGPULayers))
}
return llamaOpts
}
func ImageGeneration(height, width, mode, step, seed int, positive_prompt, negative_prompt, dst string, loader *model.ModelLoader, c Config) (func() error, error) {
if c.Backend != model.StableDiffusionBackend {
return nil, fmt.Errorf("endpoint only working with stablediffusion models")
}
inferenceModel, err := loader.BackendLoader(c.Backend, c.ImageGenerationAssets, []llama.ModelOption{}, uint32(c.Threads))
if err != nil {
return nil, err
}
var fn func() error
switch model := inferenceModel.(type) {
case *stablediffusion.StableDiffusion:
fn = func() error {
return model.GenerateImage(height, width, mode, step, seed, positive_prompt, negative_prompt, dst)
}
default:
fn = func() error {
return fmt.Errorf("creation of images not supported by the backend")
}
}
return func() error {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[c.Backend]
if !ok {
m := &sync.Mutex{}
mutexes[c.Backend] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
return fn()
}, nil
}
func ModelEmbedding(s string, tokens []int, loader *model.ModelLoader, c Config) (func() ([]float32, error), error) {
if !c.Embeddings {
return nil, fmt.Errorf("endpoint disabled for this model by API configuration")
}
modelFile := c.Model
llamaOpts := defaultLLamaOpts(c)
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads))
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads))
}
if err != nil {
return nil, err
}
var fn func() ([]float32, error)
switch model := inferenceModel.(type) {
case *llama.LLama:
fn = func() ([]float32, error) {
predictOptions := buildLLamaPredictOptions(c)
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, predictOptions...)
}
return model.Embeddings(s, predictOptions...)
}
// bert embeddings
case *bert.Bert:
fn = func() ([]float32, error) {
if len(tokens) > 0 {
return model.TokenEmbeddings(tokens, bert.SetThreads(c.Threads))
}
return model.Embeddings(s, bert.SetThreads(c.Threads))
}
default:
fn = func() ([]float32, error) {
return nil, fmt.Errorf("embeddings not supported by the backend")
}
}
return func() ([]float32, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
embeds, err := fn()
if err != nil {
return embeds, err
}
// Remove trailing 0s
for i := len(embeds) - 1; i >= 0; i-- {
if embeds[i] == 0.0 {
embeds = embeds[:i]
} else {
break
}
}
return embeds, nil
}, nil
}
func buildLLamaPredictOptions(c Config) []llama.PredictOption {
// Generate the prediction using the language model
predictOptions := []llama.PredictOption{
llama.SetTemperature(c.Temperature),
llama.SetTopP(c.TopP),
llama.SetTopK(c.TopK),
llama.SetTokens(c.Maxtokens),
llama.SetThreads(c.Threads),
}
if c.Mirostat != 0 {
predictOptions = append(predictOptions, llama.SetMirostat(c.Mirostat))
}
if c.MirostatETA != 0 {
predictOptions = append(predictOptions, llama.SetMirostatETA(c.MirostatETA))
}
if c.MirostatTAU != 0 {
predictOptions = append(predictOptions, llama.SetMirostatTAU(c.MirostatTAU))
}
if c.Debug {
predictOptions = append(predictOptions, llama.Debug)
}
predictOptions = append(predictOptions, llama.SetStopWords(c.StopWords...))
if c.RepeatPenalty != 0 {
predictOptions = append(predictOptions, llama.SetPenalty(c.RepeatPenalty))
}
if c.Keep != 0 {
predictOptions = append(predictOptions, llama.SetNKeep(c.Keep))
}
if c.Batch != 0 {
predictOptions = append(predictOptions, llama.SetBatch(c.Batch))
}
if c.F16 {
predictOptions = append(predictOptions, llama.EnableF16KV)
}
if c.IgnoreEOS {
predictOptions = append(predictOptions, llama.IgnoreEOS)
}
if c.Seed != 0 {
predictOptions = append(predictOptions, llama.SetSeed(c.Seed))
}
return predictOptions
}
func ModelInference(s string, loader *model.ModelLoader, c Config, tokenCallback func(string) bool) (func() (string, error), error) {
supportStreams := false
modelFile := c.Model
llamaOpts := defaultLLamaOpts(c)
var inferenceModel interface{}
var err error
if c.Backend == "" {
inferenceModel, err = loader.GreedyLoader(modelFile, llamaOpts, uint32(c.Threads))
} else {
inferenceModel, err = loader.BackendLoader(c.Backend, modelFile, llamaOpts, uint32(c.Threads))
}
if err != nil {
return nil, err
}
var fn func() (string, error)
switch model := inferenceModel.(type) {
case *rwkv.RwkvState:
supportStreams = true
fn = func() (string, error) {
stopWord := "\n"
if len(c.StopWords) > 0 {
stopWord = c.StopWords[0]
}
if err := model.ProcessInput(s); err != nil {
return "", err
}
response := model.GenerateResponse(c.Maxtokens, stopWord, float32(c.Temperature), float32(c.TopP), tokenCallback)
return response, nil
}
case *transformers.GPTNeoX:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *transformers.Replit:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *transformers.Starcoder:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *transformers.MPT:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *bloomz.Bloomz:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []bloomz.PredictOption{
bloomz.SetTemperature(c.Temperature),
bloomz.SetTopP(c.TopP),
bloomz.SetTopK(c.TopK),
bloomz.SetTokens(c.Maxtokens),
bloomz.SetThreads(c.Threads),
}
if c.Seed != 0 {
predictOptions = append(predictOptions, bloomz.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *transformers.GPTJ:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *transformers.Dolly:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *transformers.GPT2:
fn = func() (string, error) {
// Generate the prediction using the language model
predictOptions := []transformers.PredictOption{
transformers.SetTemperature(c.Temperature),
transformers.SetTopP(c.TopP),
transformers.SetTopK(c.TopK),
transformers.SetTokens(c.Maxtokens),
transformers.SetThreads(c.Threads),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, transformers.SetBatch(c.Batch))
}
if c.Seed != 0 {
predictOptions = append(predictOptions, transformers.SetSeed(c.Seed))
}
return model.Predict(
s,
predictOptions...,
)
}
case *gpt4all.Model:
supportStreams = true
fn = func() (string, error) {
if tokenCallback != nil {
model.SetTokenCallback(tokenCallback)
}
// Generate the prediction using the language model
predictOptions := []gpt4all.PredictOption{
gpt4all.SetTemperature(c.Temperature),
gpt4all.SetTopP(c.TopP),
gpt4all.SetTopK(c.TopK),
gpt4all.SetTokens(c.Maxtokens),
}
if c.Batch != 0 {
predictOptions = append(predictOptions, gpt4all.SetBatch(c.Batch))
}
str, er := model.Predict(
s,
predictOptions...,
)
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
// after a stream event has occurred
model.SetTokenCallback(nil)
return str, er
}
case *llama.LLama:
supportStreams = true
fn = func() (string, error) {
if tokenCallback != nil {
model.SetTokenCallback(tokenCallback)
}
predictOptions := buildLLamaPredictOptions(c)
str, er := model.Predict(
s,
predictOptions...,
)
// Seems that if we don't free the callback explicitly we leave functions registered (that might try to send on closed channels)
// For instance otherwise the API returns: {"error":{"code":500,"message":"send on closed channel","type":""}}
// after a stream event has occurred
model.SetTokenCallback(nil)
return str, er
}
}
return func() (string, error) {
// This is still needed, see: https://github.com/ggerganov/llama.cpp/discussions/784
mutexMap.Lock()
l, ok := mutexes[modelFile]
if !ok {
m := &sync.Mutex{}
mutexes[modelFile] = m
l = m
}
mutexMap.Unlock()
l.Lock()
defer l.Unlock()
res, err := fn()
if tokenCallback != nil && !supportStreams {
tokenCallback(res)
}
return res, err
}, nil
}
func ComputeChoices(predInput string, input *OpenAIRequest, config *Config, loader *model.ModelLoader, cb func(string, *[]Choice), tokenCallback func(string) bool) ([]Choice, error) {
result := []Choice{}
n := input.N
if input.N == 0 {
n = 1
}
// get the model function to call for the result
predFunc, err := ModelInference(predInput, loader, *config, tokenCallback)
if err != nil {
return result, err
}
for i := 0; i < n; i++ {
prediction, err := predFunc()
if err != nil {
return result, err
}
prediction = Finetune(*config, predInput, prediction)
cb(prediction, &result)
//result = append(result, Choice{Text: prediction})
}
return result, err
}
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
var mu sync.Mutex = sync.Mutex{}
func Finetune(config Config, input, prediction string) string {
if config.Echo {
prediction = input + prediction
}
for _, c := range config.Cutstrings {
mu.Lock()
reg, ok := cutstrings[c]
if !ok {
cutstrings[c] = regexp.MustCompile(c)
reg = cutstrings[c]
}
mu.Unlock()
prediction = reg.ReplaceAllString(prediction, "")
}
for _, c := range config.TrimSpace {
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
}
return prediction
}

@ -1,6 +0,0 @@
package main
import "embed"
//go:embed backend-assets/*
var backendAssets embed.FS

@ -1,22 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
bert "github.com/go-skynet/LocalAI/pkg/grpc/llm/bert"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &bert.Embeddings{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
bloomz "github.com/go-skynet/LocalAI/pkg/grpc/llm/bloomz"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &bloomz.LLM{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Dolly{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Falcon{}); err != nil {
panic(err)
}
}

@ -1,25 +0,0 @@
package main
// GRPC Falcon server
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
falcon "github.com/go-skynet/LocalAI/pkg/grpc/llm/falcon"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &falcon.LLM{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPT2{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
gpt4all "github.com/go-skynet/LocalAI/pkg/grpc/llm/gpt4all"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &gpt4all.LLM{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPTJ{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.GPTNeoX{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
langchain "github.com/go-skynet/LocalAI/pkg/grpc/llm/langchain"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &langchain.LLM{}); err != nil {
panic(err)
}
}

@ -1,25 +0,0 @@
package main
// GRPC Falcon server
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
llama "github.com/go-skynet/LocalAI/pkg/grpc/llm/llama-grammar"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &llama.LLM{}); err != nil {
panic(err)
}
}

@ -1,25 +0,0 @@
package main
// GRPC Falcon server
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
llama "github.com/go-skynet/LocalAI/pkg/grpc/llm/llama"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &llama.LLM{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.MPT{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
tts "github.com/go-skynet/LocalAI/pkg/grpc/tts"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &tts.Piper{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Replit{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
rwkv "github.com/go-skynet/LocalAI/pkg/grpc/llm/rwkv"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &rwkv.LLM{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
image "github.com/go-skynet/LocalAI/pkg/grpc/image"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &image.StableDiffusion{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transformers "github.com/go-skynet/LocalAI/pkg/grpc/llm/transformers"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transformers.Starcoder{}); err != nil {
panic(err)
}
}

@ -1,23 +0,0 @@
package main
// Note: this is started internally by LocalAI and a server is allocated for each model
import (
"flag"
transcribe "github.com/go-skynet/LocalAI/pkg/grpc/transcribe"
grpc "github.com/go-skynet/LocalAI/pkg/grpc"
)
var (
addr = flag.String("addr", "localhost:50051", "the address to connect to")
)
func main() {
flag.Parse()
if err := grpc.StartServer(*addr, &transcribe.Whisper{}); err != nil {
panic(err)
}
}

@ -5,7 +5,7 @@ services:
image: quay.io/go-skynet/local-ai:latest
build:
context: .
dockerfile: Dockerfile
dockerfile: Dockerfile.dev
ports:
- 8080:8080
env_file:

@ -1,21 +1,9 @@
#!/bin/bash
set -e
cd /build
if [ "$REBUILD" != "false" ]; then
rm -rf ./local-ai
ESPEAK_DATA=/build/lib/Linux-$(uname -m)/piper_phonemize/lib/espeak-ng-data make build -j${BUILD_PARALLELISM:-1}
else
echo "@@@@@"
echo "Skipping rebuild"
echo "@@@@@"
echo "If you are experiencing issues with the pre-compiled builds, try setting REBUILD=true"
echo "If you are still experiencing issues with the build, try setting CMAKE_ARGS and disable the instructions set as needed:"
echo 'CMAKE_ARGS="-DLLAMA_F16C=OFF -DLLAMA_AVX512=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF"'
echo "see the documentation at: https://localai.io/basics/build/index.html"
echo "Note: See also https://github.com/go-skynet/LocalAI/issues/288"
echo "@@@@@"
make rebuild
fi
./local-ai "$@"

@ -4,13 +4,6 @@ Here is a list of projects that can easily be integrated with the LocalAI backen
### Projects
### AutoGPT
_by [@mudler](https://github.com/mudler)_
This example shows how to use AutoGPT with LocalAI.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/autoGPT/)
### Chatbot-UI
@ -22,24 +15,6 @@ This integration shows how to use LocalAI with [mckaywrigley/chatbot-ui](https:/
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui/)
There is also a separate example to show how to manually setup a model: [example](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui-manual/)
### K8sGPT
_by [@mudler](https://github.com/mudler)_
This example show how to use LocalAI inside Kubernetes with [k8sgpt](https://k8sgpt.ai).
![Screenshot from 2023-06-19 23-58-47](https://github.com/go-skynet/go-ggml-transformers.cpp/assets/2420543/cab87409-ee68-44ae-8d53-41627fb49509)
### Flowise
_by [@mudler](https://github.com/mudler)_
This example shows how to use [FlowiseAI/Flowise](https://github.com/FlowiseAI/Flowise) with LocalAI.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/flowise/)
### Discord bot
_by [@mudler](https://github.com/mudler)_
@ -64,14 +39,6 @@ A ready to use example to show e2e how to integrate LocalAI with langchain
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-python/)
### LocalAI functions
_by [@mudler](https://github.com/mudler)_
A ready to use example to show how to use OpenAI functions with LocalAI
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/functions/)
### LocalAI WebUI
_by [@dhruvgera](https://github.com/dhruvgera)_
@ -106,14 +73,6 @@ Run a slack bot which lets you talk directly with a model
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-bot/)
### Slack bot (Question answering)
_by [@mudler](https://github.com/mudler)_
Run a slack bot, ideally for teams, which lets you ask questions on a documentation website, or a github repository.
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/slack-qa-bot/)
### Question answering on documents with llama-index
_by [@mudler](https://github.com/mudler)_
@ -130,16 +89,6 @@ Shows how to integrate with `Langchain` and `Chroma` to enable question answerin
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/langchain-chroma/)
### Telegram bot
_by [@mudler](https://github.com/mudler)
![Screenshot from 2023-06-09 00-36-26](https://github.com/go-skynet/LocalAI/assets/2420543/e98b4305-fa2d-41cf-9d2f-1bb2d75ca902)
Use LocalAI to power a Telegram bot assistant, with Image generation and audio support!
[Check it out here](https://github.com/go-skynet/LocalAI/tree/master/examples/telegram-bot/)
### Template for Runpod.io
_by [@fHachenberg](https://github.com/fHachenberg)_

@ -1,5 +0,0 @@
OPENAI_API_KEY=sk---anystringhere
OPENAI_API_BASE=http://api:8080/v1
# Models to preload at start
# Here we configure gpt4all as gpt-3.5-turbo and bert as embeddings
PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}, { "url": "github:go-skynet/model-gallery/bert-embeddings.yaml", "name": "text-embedding-ada-002"}]

@ -1,32 +0,0 @@
# AutoGPT
Example of integration with [AutoGPT](https://github.com/Significant-Gravitas/Auto-GPT).
## Run
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/autoGPT
docker-compose run --rm auto-gpt
```
Note: The example automatically downloads the `gpt4all` model as it is under a permissive license. The GPT4All model does not seem to be enough to run AutoGPT. WizardLM-7b-uncensored seems to perform better (with `f16: true`).
See the `.env` configuration file to set a different model with the [model-gallery](https://github.com/go-skynet/model-gallery) by editing `PRELOAD_MODELS`.
## Without docker
Run AutoGPT with `OPENAI_API_BASE` pointing to the LocalAI endpoint. If you run it locally for instance:
```
OPENAI_API_BASE=http://localhost:8080 python ...
```
Note: you need a model named `gpt-3.5-turbo` and `text-embedding-ada-002`. You can preload those in LocalAI at start by setting in the env:
```
PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}, { "url": "github:go-skynet/model-gallery/bert-embeddings.yaml", "name": "text-embedding-ada-002"}]
```

@ -1,42 +0,0 @@
version: "3.9"
services:
api:
image: quay.io/go-skynet/local-ai:latest
ports:
- 8080:8080
env_file:
- .env
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
auto-gpt:
image: significantgravitas/auto-gpt
depends_on:
api:
condition: service_healthy
redis:
condition: service_started
env_file:
- .env
environment:
MEMORY_BACKEND: ${MEMORY_BACKEND:-redis}
REDIS_HOST: ${REDIS_HOST:-redis}
profiles: ["exclude-from-up"]
volumes:
- ./auto_gpt_workspace:/app/autogpt/auto_gpt_workspace
- ./data:/app/data
## allow auto-gpt to write logs to disk
- ./logs:/app/logs
## uncomment following lines if you want to make use of these files
## you must have them existing in the same folder as this docker-compose.yml
#- type: bind
# source: ./azure.yaml
# target: /app/azure.yaml
#- type: bind
# source: ./ai_settings.yaml
# target: /app/ai_settings.yaml
redis:
image: "redis/redis-stack-server:latest"

@ -1,48 +0,0 @@
# chatbot-ui
Example of integration with [mckaywrigley/chatbot-ui](https://github.com/mckaywrigley/chatbot-ui).
![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)
## Setup
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/chatbot-ui
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --pull always
# or you can build the images with:
# docker-compose up -d --build
```
## Pointing chatbot-ui to a separately managed LocalAI service
If you want to use the [chatbot-ui example](https://github.com/go-skynet/LocalAI/tree/master/examples/chatbot-ui) with an externally managed LocalAI service, you can alter the `docker-compose` file so that it looks like the below. You will notice the file is smaller, because we have removed the section that would normally start the LocalAI service. Take care to update the IP address (or FQDN) that the chatbot-ui service tries to access (marked `<<LOCALAI_IP>>` below):
```
version: '3.6'
services:
chatgpt:
image: ghcr.io/mckaywrigley/chatbot-ui:main
ports:
- 3000:3000
environment:
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
- 'OPENAI_API_HOST=http://<<LOCALAI_IP>>:8080'
```
Once you've edited the Dockerfile, you can start it with `docker compose up`, then browse to `http://localhost:3000`.
## Accessing chatbot-ui
Open http://localhost:3000 for the Web UI.

@ -1,24 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
chatgpt:
image: ghcr.io/mckaywrigley/chatbot-ui:main
ports:
- 3000:3000
environment:
- 'OPENAI_API_KEY=sk-XXXXXXXXXXXXXXXXXXXX'
- 'OPENAI_API_HOST=http://api:8080'

@ -4,18 +4,22 @@ Example of integration with [mckaywrigley/chatbot-ui](https://github.com/mckaywr
![Screenshot from 2023-04-26 23-59-55](https://user-images.githubusercontent.com/2420543/234715439-98d12e03-d3ce-4f94-ab54-2b256808e05e.png)
## Run
## Setup
In this example LocalAI will download the gpt4all model and set it up as "gpt-3.5-turbo". See the `docker-compose.yaml`
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/chatbot-ui
# start with docker-compose
docker-compose up --pull always
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up -d --pull always
# or you can build the images with:
# docker-compose up -d --build
```

@ -3,32 +3,19 @@ version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
# As initially LocalAI will download the models defined in PRELOAD_MODELS
# you might need to tweak the healthcheck values here according to your network connection.
# Here we give a timespan of 20m to download all the required files.
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
interval: 1m
timeout: 20m
retries: 20
build:
context: ../../
dockerfile: Dockerfile
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
# You can preload different models here as well.
# See: https://github.com/go-skynet/model-gallery
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
chatgpt:
depends_on:
api:
condition: service_healthy
image: ghcr.io/mckaywrigley/chatbot-ui:main
ports:
- 3000:3000

@ -5,7 +5,7 @@ services:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:

@ -1,30 +0,0 @@
# flowise
Example of integration with [FlowiseAI/Flowise](https://github.com/FlowiseAI/Flowise).
![Screenshot from 2023-05-30 18-01-03](https://github.com/go-skynet/LocalAI/assets/2420543/02458782-0549-4131-971c-95ee56ec1af8)
You can check a demo video in the Flowise PR: https://github.com/FlowiseAI/Flowise/pull/123
## Run
In this example LocalAI will download the gpt4all model and set it up as "gpt-3.5-turbo". See the `docker-compose.yaml`
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/flowise
# start with docker-compose
docker-compose up --pull always
```
## Accessing flowise
Open http://localhost:3000.
## Using LocalAI
Search for LocalAI in the integration, and use the `http://api:8080/` as URL.

@ -1,37 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
# As initially LocalAI will download the models defined in PRELOAD_MODELS
# you might need to tweak the healthcheck values here according to your network connection.
# Here we give a timespan of 20m to download all the required files.
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
interval: 1m
timeout: 20m
retries: 20
build:
context: ../../
dockerfile: Dockerfile
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
# You can preload different models here as well.
# See: https://github.com/go-skynet/model-gallery
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
flowise:
depends_on:
api:
condition: service_healthy
image: flowiseai/flowise
ports:
- 3000:3000
volumes:
- ~/.flowise:/root/.flowise
command: /bin/sh -c "sleep 3; flowise start"

@ -1,9 +0,0 @@
OPENAI_API_KEY=sk---anystringhere
OPENAI_API_BASE=http://api:8080/v1
# Models to preload at start
# Here we configure gpt4all as gpt-3.5-turbo and bert as embeddings
PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/openllama-7b-open-instruct.yaml", "name": "gpt-3.5-turbo"}]
## Change the default number of threads
#THREADS=14

@ -1,5 +0,0 @@
FROM python:3.10-bullseye
COPY . /app
WORKDIR /app
RUN pip install --no-cache-dir -r requirements.txt
ENTRYPOINT [ "python", "./functions-openai.py" ];

@ -1,18 +0,0 @@
# LocalAI functions
Example of using LocalAI functions, see the [OpenAI](https://openai.com/blog/function-calling-and-other-api-updates) blog post.
## Run
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/functions
docker-compose run --rm functions
```
Note: The example automatically downloads the `openllama` model as it is under a permissive license.
See the `.env` configuration file to set a different model with the [model-gallery](https://github.com/go-skynet/model-gallery) by editing `PRELOAD_MODELS`.

@ -1,23 +0,0 @@
version: "3.9"
services:
api:
image: quay.io/go-skynet/local-ai:master
ports:
- 8080:8080
env_file:
- .env
environment:
- DEBUG=true
- MODELS_PATH=/models
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]
functions:
build:
context: .
dockerfile: Dockerfile
depends_on:
api:
condition: service_healthy
env_file:
- .env

@ -1,76 +0,0 @@
import openai
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
weather_info = {
"location": location,
"temperature": "72",
"unit": unit,
"forecast": ["sunny", "windy"],
}
return json.dumps(weather_info)
def run_conversation():
# Step 1: send the conversation and available functions to GPT
messages = [{"role": "user", "content": "What's the weather like in Boston?"}]
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
functions=functions,
function_call="auto", # auto is default, but we'll be explicit
)
response_message = response["choices"][0]["message"]
# Step 2: check if GPT wanted to call a function
if response_message.get("function_call"):
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
function_name = response_message["function_call"]["name"]
fuction_to_call = available_functions[function_name]
function_args = json.loads(response_message["function_call"]["arguments"])
function_response = fuction_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
# Step 4: send the info on the function call and function response to GPT
messages.append(response_message) # extend conversation with assistant's reply
messages.append(
{
"role": "function",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
) # get a new response from GPT where it can see the function response
return second_response
print(run_conversation())

@ -1,2 +0,0 @@
langchain==0.0.234
openai==0.27.8

@ -1,70 +0,0 @@
# k8sgpt example
This example show how to use LocalAI with k8sgpt
![Screenshot from 2023-06-19 23-58-47](https://github.com/go-skynet/go-ggml-transformers.cpp/assets/2420543/cab87409-ee68-44ae-8d53-41627fb49509)
## Create the cluster locally with Kind (optional)
If you want to test this locally without a remote Kubernetes cluster, you can use kind.
Install [kind](https://kind.sigs.k8s.io/) and create a cluster:
```
kind create cluster
```
## Setup LocalAI
We will use [helm](https://helm.sh/docs/intro/install/):
```
helm repo add go-skynet https://go-skynet.github.io/helm-charts/
helm repo update
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/k8sgpt
# modify values.yaml preload_models with the models you want to install.
# CHANGE the URL to a model in huggingface.
helm install local-ai go-skynet/local-ai --create-namespace --namespace local-ai --values values.yaml
```
## Setup K8sGPT
```
# Install k8sgpt
helm repo add k8sgpt https://charts.k8sgpt.ai/
helm repo update
helm install release k8sgpt/k8sgpt-operator -n k8sgpt-operator-system --create-namespace
```
Apply the k8sgpt-operator configuration:
```
kubectl apply -f - << EOF
apiVersion: core.k8sgpt.ai/v1alpha1
kind: K8sGPT
metadata:
name: k8sgpt-local-ai
namespace: default
spec:
backend: localai
baseUrl: http://local-ai.local-ai.svc.cluster.local:8080/v1
noCache: false
model: gpt-3.5-turbo
noCache: false
version: v0.3.0
enableAI: true
EOF
```
## Test
Apply a broken pod:
```
kubectl apply -f broken-pod.yaml
```

@ -1,14 +0,0 @@
apiVersion: v1
kind: Pod
metadata:
name: broken-pod
spec:
containers:
- name: broken-pod
image: nginx:1.a.b.c
livenessProbe:
httpGet:
path: /
port: 90
initialDelaySeconds: 3
periodSeconds: 3

@ -1,95 +0,0 @@
replicaCount: 1
deployment:
# https://quay.io/repository/go-skynet/local-ai?tab=tags
image: quay.io/go-skynet/local-ai:latest
env:
threads: 4
debug: "true"
context_size: 512
preload_models: '[{ "url": "github:go-skynet/model-gallery/wizard.yaml", "name": "gpt-3.5-turbo", "overrides": { "parameters": { "model": "WizardLM-7B-uncensored.ggmlv3.q5_1" }},"files": [ { "uri": "https://huggingface.co//WizardLM-7B-uncensored-GGML/resolve/main/WizardLM-7B-uncensored.ggmlv3.q5_1.bin", "sha256": "d92a509d83a8ea5e08ba4c2dbaf08f29015932dc2accd627ce0665ac72c2bb2b", "filename": "WizardLM-7B-uncensored.ggmlv3.q5_1" }]}]'
modelsPath: "/models"
resources:
{}
# We usually recommend not to specify default resources and to leave this as a conscious
# choice for the user. This also increases chances charts run on environments with little
# resources, such as Minikube. If you do want to specify resources, uncomment the following
# lines, adjust them as necessary, and remove the curly braces after 'resources:'.
# limits:
# cpu: 100m
# memory: 128Mi
# requests:
# cpu: 100m
# memory: 128Mi
# Prompt templates to include
# Note: the keys of this map will be the names of the prompt template files
promptTemplates:
{}
# ggml-gpt4all-j.tmpl: |
# The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
# ### Prompt:
# {{.Input}}
# ### Response:
# Models to download at runtime
models:
# Whether to force download models even if they already exist
forceDownload: false
# The list of URLs to download models from
# Note: the name of the file will be the name of the loaded model
list:
#- url: "https://gpt4all.io/models/ggml-gpt4all-j.bin"
# basicAuth: base64EncodedCredentials
# Persistent storage for models and prompt templates.
# PVC and HostPath are mutually exclusive. If both are enabled,
# PVC configuration takes precedence. If neither are enabled, ephemeral
# storage is used.
persistence:
pvc:
enabled: false
size: 6Gi
accessModes:
- ReadWriteOnce
annotations: {}
# Optional
storageClass: ~
hostPath:
enabled: false
path: "/models"
service:
type: ClusterIP
port: 8080
annotations: {}
# If using an AWS load balancer, you'll need to override the default 60s load balancer idle timeout
# service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1200"
ingress:
enabled: false
className: ""
annotations:
{}
# kubernetes.io/ingress.class: nginx
# kubernetes.io/tls-acme: "true"
hosts:
- host: chart-example.local
paths:
- path: /
pathType: ImplementationSpecific
tls: []
# - secretName: chart-example-tls
# hosts:
# - chart-example.local
nodeSelector: {}
tolerations: []
affinity: {}

@ -1,68 +0,0 @@
# Data query example
Example of integration with HuggingFace Inference API with help of [langchaingo](https://github.com/tmc/langchaingo).
## Setup
Download the LocalAI and start the API:
```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/langchain-huggingface
docker-compose up -d
```
Node: Ensure you've set `HUGGINGFACEHUB_API_TOKEN` environment variable, you can generate it
on [Settings / Access Tokens](https://huggingface.co/settings/tokens) page of HuggingFace site.
This is an example `.env` file for LocalAI:
```ini
MODELS_PATH=/models
CONTEXT_SIZE=512
HUGGINGFACEHUB_API_TOKEN=hg_123456
```
## Using remote models
Now you can use any remote models available via HuggingFace API, for example let's enable using of
[gpt2](https://huggingface.co/gpt2) model in `gpt-3.5-turbo.yaml` config:
```yml
name: gpt-3.5-turbo
parameters:
model: gpt2
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
backend: "langchain-huggingface"
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all
```
Here is you can see in field `parameters.model` equal `gpt2` and `backend` equal `langchain-huggingface`.
## How to use
```shell
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"gpt-3.5-turbo","object":"model"}]}
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"prompt": "A long time ago in a galaxy far, far away",
"temperature": 0.7
}'
```

@ -1,15 +0,0 @@
version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
build:
context: ../../
dockerfile: Dockerfile
ports:
- 8080:8080
env_file:
- ../../.env
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai"]

@ -1,17 +0,0 @@
name: gpt-3.5-turbo
parameters:
model: gpt2
top_k: 80
temperature: 0.2
top_p: 0.7
context_size: 1024
backend: "langchain-huggingface"
stopwords:
- "HUMAN:"
- "GPT:"
roles:
user: " "
system: " "
template:
completion: completion
chat: gpt4all

@ -1,4 +0,0 @@
The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.
### Prompt:
{{.Input}}
### Response:

@ -12,8 +12,15 @@ git clone https://github.com/go-skynet/LocalAI
cd LocalAI/examples/langchain-python
# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
# Download gpt4all-j to models/
wget https://gpt4all.io/models/ggml-gpt4all-j.bin -O models/ggml-gpt4all-j
# start with docker-compose
docker-compose up --pull always
docker-compose up -d --build
pip install langchain
pip install openai

@ -3,25 +3,14 @@ version: '3.6'
services:
api:
image: quay.io/go-skynet/local-ai:latest
# As initially LocalAI will download the models defined in PRELOAD_MODELS
# you might need to tweak the healthcheck values here according to your network connection.
# Here we give a timespan of 20m to download all the required files.
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/readyz"]
interval: 1m
timeout: 20m
retries: 20
build:
context: ../../
dockerfile: Dockerfile
dockerfile: Dockerfile.dev
ports:
- 8080:8080
environment:
- DEBUG=true
- MODELS_PATH=/models
# You can preload different models here as well.
# See: https://github.com/go-skynet/model-gallery
- 'PRELOAD_MODELS=[{"url": "github:go-skynet/model-gallery/gpt4all-j.yaml", "name": "gpt-3.5-turbo"}]'
volumes:
- ./models:/models:cached
command: ["/usr/bin/local-ai" ]

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save