examples: add update index example, update README

token_berts
mudler 2 years ago
parent 6ed7b10273
commit 4f551ce414
  1. 27
      examples/query_data/README.md
  2. 4
      examples/query_data/query.py
  3. 32
      examples/query_data/update.py

@ -4,11 +4,17 @@ This example makes use of [Llama-Index](https://gpt-index.readthedocs.io/en/stab
It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html). It loosely follows [the quickstart](https://gpt-index.readthedocs.io/en/stable/guides/primer/usage_pattern.html).
Summary of the steps:
- prepare the dataset (and store it into `data`)
- prepare a vector index database to run queries on
- run queries
## Requirements ## Requirements
For this in order to work, you will need a model compatible with the `llama.cpp` backend. This is will not work with gpt4all. For this in order to work, you will need LocalAI and a model compatible with the `llama.cpp` backend. This is will not work with gpt4all, however you can mix models (use a llama.cpp one to build the index database, and gpt4all to query it).
The example uses `WizardLM`. Edit the config files in `models/` accordingly to specify the model you use (change `HERE`). The example uses `WizardLM` for both embeddings and Q&A. Edit the config files in `models/` accordingly to specify the model you use (change `HERE` in the configuration files).
You will also need a training data set. Copy that over `data`. You will also need a training data set. Copy that over `data`.
@ -28,7 +34,9 @@ cd LocalAI/examples/query_data
docker-compose up -d --build docker-compose up -d --build
``` ```
### Create a storage: ### Create a storage
In this step we will create a local vector database from our document set, so later we can ask questions on it with the LLM.
```bash ```bash
export OPENAI_API_BASE=http://localhost:8080/v1 export OPENAI_API_BASE=http://localhost:8080/v1
@ -41,9 +49,22 @@ After it finishes, a directory "storage" will be created with the vector index d
## Query ## Query
We can now query the dataset.
```bash ```bash
export OPENAI_API_BASE=http://localhost:8080/v1 export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk- export OPENAI_API_KEY=sk-
python query.py python query.py
``` ```
## Update
To update our vector database, run `update.py`
```bash
export OPENAI_API_BASE=http://localhost:8080/v1
export OPENAI_API_KEY=sk-
python update.py
```

@ -29,5 +29,7 @@ storage_context = StorageContext.from_defaults(persist_dir='./storage')
index = load_index_from_storage(storage_context, service_context=service_context, ) index = load_index_from_storage(storage_context, service_context=service_context, )
query_engine = index.as_query_engine() query_engine = index.as_query_engine()
response = query_engine.query("XXXXXX your question here XXXXX")
data = input("Question: ")
response = query_engine.query(data)
print(response) print(response)

@ -0,0 +1,32 @@
import os
# Uncomment to specify your OpenAI API key here (local testing only, not in production!), or add corresponding environment variable (recommended)
# os.environ['OPENAI_API_KEY']= ""
from llama_index import LLMPredictor, PromptHelper, SimpleDirectoryReader, ServiceContext
from langchain.llms.openai import OpenAI
from llama_index import StorageContext, load_index_from_storage
base_path = os.environ.get('OPENAI_API_BASE', 'http://localhost:8080/v1')
# This example uses text-davinci-003 by default; feel free to change if desired
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path))
# Configure prompt parameters and initialise helper
max_input_size = 1024
num_output = 256
max_chunk_overlap = 20
prompt_helper = PromptHelper(max_input_size, num_output, max_chunk_overlap)
# Load documents from the 'data' directory
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir='./storage')
# load index
index = load_index_from_storage(storage_context, service_context=service_context, )
documents = SimpleDirectoryReader('data').load_data()
index.refresh(documents)
index.storage_context.persist(persist_dir="./storage")
Loading…
Cancel
Save